对数据进行主要成分分析训练分类模型并预测居民收入进行超参数调优给出相关代码
时间: 2023-08-08 16:04:55 浏览: 199
好的,以下是一个使用主成分分析(PCA)进行特征降维后训练分类模型,并通过交叉验证进行超参数调优的代码:
```python
# 导入必要的库和模块
from pyspark.ml.feature import PCA, VectorAssembler, StringIndexer
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.sql import SparkSession
# 创建SparkSession
spark = SparkSession.builder.appName('income_prediction').getOrCreate()
# 读取数据集
data = spark.read.csv('income.csv', header=True, inferSchema=True)
# 数据预处理
categorical_cols = ['workclass', 'education', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'native_country', 'income']
indexers = [StringIndexer(inputCol=col, outputCol=col+'_indexed').fit(data) for col in categorical_cols]
assembler = VectorAssembler(inputCols=[col+'_indexed' for col in categorical_cols[:-1]], outputCol='features')
preprocessor = Pipeline(stages=indexers+[assembler])
data_processed = preprocessor.fit(data).transform(data)
# 特征降维
pca = PCA(k=5, inputCol='features', outputCol='pca_features')
data_pca = pca.fit(data_processed).transform(data_processed)
# 模型构建和训练
rf = RandomForestClassifier(featuresCol='pca_features', labelCol='income_indexed')
paramGrid = ParamGridBuilder().addGrid(rf.numTrees, [10, 20, 30]).addGrid(rf.maxDepth, [5, 10, 15]).build()
evaluator = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction', labelCol='income_indexed')
cv = CrossValidator(estimator=rf, estimatorParamMaps=paramGrid, evaluator=evaluator, numFolds=5)
model = cv.fit(data_pca)
# 模型评估
predictions = model.transform(data_pca)
auc = evaluator.evaluate(predictions)
# 模型预测
new_data = spark.createDataFrame([('Private', 'HS-grad', 'Married-civ-spouse', 'Craft-repair', 'Husband', 'White', 'Male', 'United-States')], ['workclass', 'education', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'native_country'])
new_data_processed = preprocessor.transform(new_data)
new_data_pca = pca.transform(new_data_processed)
prediction = model.transform(new_data_pca).select('prediction').collect()[0][0]
print('AUC:', auc)
print('Prediction:', prediction)
```
需要注意的是,上述代码中使用了随机森林分类器,并通过交叉验证进行超参数调优。您可以根据具体情况选择不同的算法和超参数进行实验。
阅读全文