12. 阅读以下的代码段,请指出存在的问题,并提出修改的建议。 public void writeFile(String fileName, String content) { OutputStream out; try { if (fileName != null && fileName != "") { out = new FileOutputStream(fileName); out.write(content.getBytes()); } } catch (FileNotFoundException e) { } catch (IOException e) { e.printStackTrace(); } }
时间: 2024-01-07 08:03:10 浏览: 72
存在以下问题和建议修改:
1. 在判断文件名是否为空时,使用了字符串的不等于操作符 "!=",这样做有时候会导致逻辑错误。应该使用 equals() 或 equalsIgnoreCase() 方法来比较字符串是否相等。
2. 在 catch 块中,捕获了 FileNotFoundException 异常并直接忽略了,这样做可能会导致无法查找到问题所在。建议在捕获异常后输出异常信息或者记录日志。
3. 在写文件时,没有使用 try-with-resources 语句来自动关闭输出流。这可能会导致资源泄漏。建议使用 try-with-resources 语句来确保输出流被正确地关闭。
下面是修改后的代码:
```
public void writeFile(String fileName, String content) {
try (OutputStream out = new FileOutputStream(fileName)) {
if (fileName != null && !fileName.equals("")) {
out.write(content.getBytes());
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
```
相关问题
写一个java并发写入文件的代码
### 回答1:
好的,以下是一个示例代码,它实现了多个线程同时写入同一个文件:
```
import java.io.FileWriter;
import java.io.IOException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ConcurrentFileWriter {
private final static int THREAD_COUNT = 10;
private final static String FILE_NAME = "concurrent_file.txt";
public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(THREAD_COUNT);
for (int i = 0; i < THREAD_COUNT; i++) {
final int index = i;
executorService.submit(() -> {
try (FileWriter fileWriter = new FileWriter(FILE_NAME, true)) {
for (int j = 0; j < 100; j++) {
fileWriter.write("Thread " + index + ": Line " + j + "\n");
}
} catch (IOException e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
}
```
这段代码创建了 10 个线程,每个线程写入文件 `concurrent_file.txt` 100 行数据。注意,由于文件是被多个线程写入,因此文件内容可能是无序的。
### 回答2:
下面是一个使用Java并发写入文件的示例代码:
```java
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
public class ConcurrentFileWriter {
private static final String FILE_PATH = "output.txt";
private static final int NUM_THREADS = 10;
private static final int NUM_TASKS = 100;
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(NUM_THREADS);
for (int i = 0; i < NUM_TASKS; i++) {
final int taskNumber = i;
executor.execute(() -> {
String content = "This is task number " + taskNumber + "\n";
writeToFile(content);
});
}
executor.shutdown();
try {
executor.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private static synchronized void writeToFile(String content) {
try (BufferedWriter writer = new BufferedWriter(new FileWriter(FILE_PATH, true))) {
writer.write(content);
} catch (IOException e) {
e.printStackTrace();
}
}
}
```
该代码创建了一个固定大小的线程池,通过`ExecutorService`管理线程。`NUM_THREADS`和`NUM_TASKS`分别表示线程池中的线程数量和要执行的任务数量。
在主循环中,通过调用`executor.execute()`方法,将待写入文件的任务提交给线程池执行。每个任务都会生成一段内容并调用`writeToFile()`方法将内容写入文件中。
在`writeToFile()`方法中,使用`synchronized`关键字来确保多个线程之间的互斥访问,避免并发写入导致的问题。
最后,当所有任务都执行完毕后,调用`executor.shutdown()`关闭线程池,并通过`executor.awaitTermination()`等待所有任务执行完成。
注意:由于在`writeToFile()`方法中使用了`synchronized`关键字,可能会影响性能。在实际应用中,可以考虑使用更高效的并发写入方式,例如使用`java.util.concurrent.locks.Lock`实现精确控制。
### 回答3:
以下是一个使用Java并发编写文件的示例代码:
```java
import java.io.*;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ConcurrentFileWriter {
public static void main(String[] args) {
// 创建一个具有10个线程的线程池
ExecutorService executorService = Executors.newFixedThreadPool(10);
// 定义要写入的数据
String data = "Hello, World!";
// 创建10个任务同时写入文件
for (int i = 1; i <= 10; i++) {
int fileNumber = i;
executorService.execute(() -> writeFile("file_" + fileNumber + ".txt", data));
}
// 关闭线程池
executorService.shutdown();
}
private static void writeFile(String fileName, String data) {
try {
BufferedWriter writer = new BufferedWriter(new FileWriter(fileName));
writer.write(data);
// 模拟写入数据需要一些时间
Thread.sleep(1000);
writer.close();
System.out.println("写入文件成功:" + fileName);
} catch (IOException | InterruptedException e) {
e.printStackTrace();
}
}
}
```
在上面的代码中,我们创建了一个具有10个线程的线程池,然后定义了要写入的数据为"Hello, World!"。接下来,我们使用循环创建了10个任务,每个任务使用线程池并行地执行。每个任务会调用`writeFile`方法来写入文件。
在`writeFile`方法中,我们使用`BufferedWriter`和`FileWriter`来打开文件并写入数据。为了模拟写入操作需要一些时间,我们在写入数据之后使用`Thread.sleep(1000)`方法来暂停1秒钟。最后,关闭文件,并打印写入文件成功的信息。
这样,我们便可以通过并发的方式将数据写入多个文件中。
用java代码完成以下实验:1、输入一段100—200字的英文短文,存入一文件a中。 2、写函数统计短文出现的字母个数n及每个字母的出现次数。 3、写函数以字母出现次数作权值,用固定数组构建Haffman树(n个叶子),给出每个字母的Haffman编码。 4、用每个字母编码对原短文进行编码,码文存入文件b中。 5、用Haffman树对b中码文进行译码,结果存入文件c中,比较a,c是否一致,以检验编码、译码的正确性。
以下是Java代码实现,包括了对文件的读写操作、Huffman编码和解码实现:
```java
import java.io.*;
import java.util.*;
public class HuffmanCoding {
private static String INPUT_FILE = "a.txt";
private static String OUTPUT_FILE = "b.txt";
private static String DECODED_FILE = "c.txt";
public static void main(String[] args) {
try {
// 读取输入文件
String input = readFile(INPUT_FILE);
System.out.println("原文:\n" + input + "\n");
// 统计每个字符的出现次数
Map<Character, Integer> frequencyMap = getFrequencyMap(input);
System.out.println("字符出现频率:\n" + frequencyMap + "\n");
// 构建Huffman树
HuffmanTree huffmanTree = new HuffmanTree(frequencyMap);
// 获取每个字符的Huffman编码
Map<Character, String> encodingMap = huffmanTree.getEncodingMap();
System.out.println("Huffman编码:\n" + encodingMap + "\n");
// 对原文进行编码,输出到文件b中
String encoded = encode(input, encodingMap);
writeFile(OUTPUT_FILE, encoded);
System.out.println("编码结果已写入文件b.txt");
// 对编码后的文本进行解码,输出到文件c中
String decoded = decode(encoded, huffmanTree.getRoot());
writeFile(DECODED_FILE, decoded);
System.out.println("解码结果已写入文件c.txt");
// 比较原文和解码后的文本是否一致
if (input.equals(decoded)) {
System.out.println("编码、解码成功!");
} else {
System.out.println("编码、解码失败!");
}
} catch (IOException e) {
e.printStackTrace();
}
}
// 读取文件内容
private static String readFile(String filename) throws IOException {
BufferedReader br = new BufferedReader(new FileReader(filename));
StringBuilder sb = new StringBuilder();
String line;
while ((line = br.readLine()) != null) {
sb.append(line);
}
br.close();
return sb.toString();
}
// 写入文件内容
private static void writeFile(String filename, String content) throws IOException {
BufferedWriter bw = new BufferedWriter(new FileWriter(filename));
bw.write(content);
bw.close();
}
// 统计字符出现频率
private static Map<Character, Integer> getFrequencyMap(String input) {
Map<Character, Integer> frequencyMap = new HashMap<>();
for (char c : input.toCharArray()) {
frequencyMap.put(c, frequencyMap.getOrDefault(c, 0) + 1);
}
return frequencyMap;
}
// Huffman编码
private static String encode(String input, Map<Character, String> encodingMap) {
StringBuilder sb = new StringBuilder();
for (char c : input.toCharArray()) {
sb.append(encodingMap.get(c));
}
return sb.toString();
}
// Huffman解码
private static String decode(String encoded, HuffmanNode root) {
StringBuilder sb = new StringBuilder();
HuffmanNode node = root;
for (char c : encoded.toCharArray()) {
if (c == '0') {
node = node.getLeft();
} else {
node = node.getRight();
}
if (node.isLeaf()) {
sb.append(node.getCharacter());
node = root;
}
}
return sb.toString();
}
// Huffman树
private static class HuffmanTree {
private final HuffmanNode root;
public HuffmanTree(Map<Character, Integer> frequencyMap) {
PriorityQueue<HuffmanNode> queue = new PriorityQueue<>();
for (Map.Entry<Character, Integer> entry : frequencyMap.entrySet()) {
queue.offer(new HuffmanNode(entry.getKey(), entry.getValue()));
}
while (queue.size() > 1) {
HuffmanNode left = queue.poll();
HuffmanNode right = queue.poll();
queue.offer(new HuffmanNode(left, right));
}
root = queue.poll();
}
public Map<Character, String> getEncodingMap() {
Map<Character, String> encodingMap = new HashMap<>();
StringBuilder sb = new StringBuilder();
buildEncodingMap(root, sb, encodingMap);
return encodingMap;
}
private void buildEncodingMap(HuffmanNode node, StringBuilder sb, Map<Character, String> encodingMap) {
if (node.isLeaf()) {
encodingMap.put(node.getCharacter(), sb.toString());
return;
}
sb.append('0');
buildEncodingMap(node.getLeft(), sb, encodingMap);
sb.deleteCharAt(sb.length() - 1);
sb.append('1');
buildEncodingMap(node.getRight(), sb, encodingMap);
sb.deleteCharAt(sb.length() - 1);
}
public HuffmanNode getRoot() {
return root;
}
private static class HuffmanNode implements Comparable<HuffmanNode> {
private final char character;
private final int frequency;
private final HuffmanNode left;
private final HuffmanNode right;
public HuffmanNode(char character, int frequency) {
this.character = character;
this.frequency = frequency;
this.left = null;
this.right = null;
}
public HuffmanNode(HuffmanNode left, HuffmanNode right) {
this.character = '\0';
this.frequency = left.frequency + right.frequency;
this.left = left;
this.right = right;
}
public char getCharacter() {
return character;
}
public int getFrequency() {
return frequency;
}
public HuffmanNode getLeft() {
return left;
}
public HuffmanNode getRight() {
return right;
}
public boolean isLeaf() {
return left == null && right == null;
}
@Override
public int compareTo(HuffmanNode o) {
return Integer.compare(frequency, o.frequency);
}
}
}
}
```
注意:上述代码中,Huffman编码的实现采用了递归方式,可能会在处理较长的文本时出现Stack Overflow异常。可以将递归改成迭代方式来解决此问题。
阅读全文
相关推荐
















