线性可分支持向量机原理
时间: 2023-08-12 11:04:14 浏览: 96
线性可分支持向量机(Linear Support Vector Machine,简称 Linear SVM)是一种基于统计学习理论的二分类模型,其主要思想是在特征空间中找到一个最优的超平面,使得不同类别的数据点能够被分离开来。
具体来说,假设有一个训练集 ${(x_1,y_1),(x_2,y_2),...,(x_n,y_n)}$,其中 $x_i∈R^d$ 表示第 $i$ 个样本的特征向量,$y_i∈{-1,+1}$ 表示该样本的类别。线性可分支持向量机的目标是找到一个超平面 $w^T x+b=0$,使得所有属于 $-1$ 类的样本点在超平面的一边,而所有属于 $+1$ 类的样本点在超平面的另一边,并且使得这个超平面距离两个类别中距离最近的点的距离最大。
这个距离最大化问题可以被看作是一个凸优化问题,可以使用拉格朗日乘子法求解。通过求解拉格朗日对偶问题,可以得到一个关于样本数据的内积的表达式,这个表达式可以用来预测新的测试样本的类别。
线性可分支持向量机的主要优点是它的训练时间复杂度较低,预测速度很快,而且在高维空间中表现良好,适用于处理大量特征的数据集。其缺点是对于非线性可分的数据集,需要通过核函数的方法将数据映射到高维空间来解决。
阅读全文