写VMD-lstm分解功率的预测
时间: 2023-07-15 10:15:41 浏览: 207
基于VMD-SSA-LSTM的多维时序光伏功率预测MATLAB程序
5星 · 资源好评率100%
VMD-LSTM是一种混合模型,将VMD分解和LSTM网络相结合,用于电力负荷预测和功率分解。以下是使用VMD-LSTM进行功率预测的代码示例:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, LSTM
from vmd import VMD
# 生成示例数据
t = np.arange(0, 1000, 1)
x = np.sin(t) + np.sin(2*t) + np.sin(5*t) # 总功率
# VMD 分解
vmd = VMD(alpha=2000, tau=0.1, K=5, DC=0, init="rand")
u, u_hat = vmd.decompose(x)
# 准备 LSTM 数据
lookback = 10
train_size = 800
train_data = u_hat[:train_size]
test_data = u_hat[train_size:]
train_X, train_y = [], []
test_X, test_y = [], []
for i in range(len(train_data)-lookback-1):
train_X.append(train_data[i:(i+lookback)])
train_y.append(train_data[i+lookback])
for i in range(len(test_data)-lookback-1):
test_X.append(test_data[i:(i+lookback)])
test_y.append(test_data[i+lookback])
# 转换为 numpy 数组
train_X, train_y = np.array(train_X), np.array(train_y)
test_X, test_y = np.array(test_X), np.array(test_y)
# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(units=50, input_shape=(train_X.shape[1], 1)))
model.add(Dense(units=1))
model.compile(optimizer="adam", loss="mean_squared_error")
# 训练 LSTM 模型
model.fit(train_X, train_y, epochs=100, batch_size=32)
# 预测测试数据
test_predict = model.predict(test_X)
test_predict = np.reshape(test_predict, (test_predict.shape[0],))
# 计算总功率和分解后的功率
total_power = np.sum(x)
vmd_power = np.sum(u_hat)
# 计算 LSTM 预测的功率
lstm_power = np.sum(np.concatenate([train_data[-lookback:], test_predict]))
# 打印结果
print("Total Power:", total_power)
print("VMD Power:", vmd_power)
print("LSTM Power:", lstm_power)
```
在上面的代码中,我们首先生成一个示例数据,然后使用VMD将其分解为不同的信号分量。接下来,我们将分解后的信号分量作为LSTM模型的输入,训练模型并进行预测,最后计算预测的功率并打印结果。
需要注意的是,在实际应用中,需要根据具体的数据集和任务进行调整和优化。
阅读全文