class_weights=compute_class_weight('balanced',classes=np.unique(pee_label_train+np_label_train), y=pee_label_train+np_label_train) class_weights=torch.tensor(class_weights, dtype=torch.float) loss_function=torch.nn.CrossEntropyLoss(class_weights.to(device) 这段代码书写是否正确
时间: 2023-10-16 20:09:53 浏览: 170
这段代码的书写有一些问题,应该将最后一行的括号补全:
```
class_weights = compute_class_weight('balanced', classes=np.unique(pee_label_train+np_label_train), y=pee_label_train+np_label_train)
class_weights = torch.tensor(class_weights, dtype=torch.float)
loss_function = torch.nn.CrossEntropyLoss(class_weights.to(device))
```
这里的修改是增加了`loss_function`最后一行中的右括号,将其补全。这是因为`CrossEntropyLoss`函数是需要传入参数的,而括号不完整会导致代码报错。
相关问题
class_weights = class_weight.compute_class_weight('balanced', np.unique(y), y)是什么意思
class_weights = class_weight.compute_class_weight('balanced', np.unique(y), y)是用于计算数据集中不同类别样本在模型训练中的权重,其中'balanced'表示采用平衡权重策略,np.unique(y)表示获取样本中的类别数,y表示样本的真实标签值。这段代码会返回一个权重列表,用于在模型训练中调整不同类别样本的权重,以达到平衡各类别的样本分布。
from sklearn.utils.class_weight import compute_sample_weight sample_weights = compute_sample_weight( class_weight='balanced',y=train_df['class'] #provide your own target name ) xgb_classifier.fit(X,y,sample_weight=sample_weights)是什么意思,该如何修改
这段代码使用了 scikit-learn 中的 compute_sample_weight 函数来计算样本权重,以便在训练过程中使用平衡的类别权重来提高模型的性能。其中,class_weight 参数设置为 'balanced' 表示使用平衡的类别权重。
在最后一行中,使用 XGBoost 分类器的 fit 函数来拟合数据并传递 sample_weight 参数来使用计算出的样本权重。
如果你想修改这段代码,可以根据自己的需求更改 class_weight 参数的值,或者使用其他的样本权重计算方式。同时,如果你不想使用样本权重,也可以将最后一行的 sample_weight 参数去掉,直接使用 xgb_classifier.fit(X, y) 来拟合数据。