解释代码dataSet = loadDataSet("test.txt") k = 4 centroids, clusterAssment = KMeans(dataSet, k) showCluster(dataSet, k, centroids, clusterAssment)

时间: 2023-05-24 12:05:34 浏览: 39
这段代码是一个 K-Means 聚类算法的应用,其功能是将输入数据集通过聚类算法划分为 k 类。具体步骤如下: 1. 通过函数 `loadDataSet("test.txt")` 加载输入数据集 `dataSet`,该函数会将文本文件中的数据转换为一个矩阵。 2. 设定要聚类的类别数 `k`,并将输入数据集 `dataSet` 与 `k` 作为参数传入函数 `KMeans()`。 3. `KMeans()` 函数会按照 K-Means 算法的流程进行聚类,最终返回聚类结果 `centroids`(各聚类中心的坐标)和 `clusterAssment`(每个数据点所属聚类中心的编号)。 4. 最后将输入数据集 `dataSet`、聚类的类别数 `k`、聚类中心坐标 `centroids` 和每个数据点所属聚类中心编号 `clusterAssment` 作为参数传入函数 `showCluster()`,该函数会将聚类结果可视化展示出来。
相关问题

centroids = random.sample(dataSet, k) kmeans算法中这代码啥意思

这段代码是 K-Means 算法中用来随机初始化簇质心的代码。K-Means 算法是一种聚类算法,它通过不断地迭代更新簇质心的位置,将数据集中的点分配到不同的簇中。在算法开始时,需要随机选择 K 个点作为初始的簇质心,这里的代码就是从数据集中随机选择 K 个点作为簇质心。其中,dataSet 是数据集,k 是要聚类的簇数。函数 random.sample(seq, k) 是 Python 中用来从序列 seq 中随机选择 k 个元素的函数。

代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)

这段代码实现的是k-means聚类算法,但是有一些地方可以改进: 1. 函数kMeans中的createCent参数可以通过修改为直接传入质心的方式来更加灵活。 2. 函数kMeans中的distMeans参数可以修改为scipy库中的距离函数,如scipy.spatial.distance.cdist,来提高计算效率。 3. 函数kMeans中的clusterAssment可以使用pd.DataFrame来进行初始化,这样可以避免使用np.zeros和np.inf来进行初始化。 改进后的代码如下: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from scipy.spatial.distance import cdist def randCent(dataSet, k): """ 随机生成k个质心 """ n = dataSet.shape[1] # 列数 data_min = dataSet.min() data_max = dataSet.max() # 生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min, data_max, (k, n)) return data_cent def kMeans(dataSet, k, createCent=randCent, distMeans=cdist): """ k-means聚类算法 """ centroids = createCent(dataSet, k) # 初始化质心,k即为初始化质心的总个数 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame()], axis=1, ignore_index=True) # 将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False dist = distMeans(dataSet, centroids, metric='euclidean') clusterAssment = np.argmin(dist, axis=1) result_set.iloc[:, -1] = pd.Series(clusterAssment) for i in range(k): cent_df = result_set[result_set.iloc[:, -1] == i].mean() # 按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 if not cent_df.empty: centroids[i] = cent_df.iloc[:-1].values # 当前质心 clusterChanged = True return centroids, result_set x = np.random.randint(0, 100, size=100) y = np.random.randint(0, 100, size=100) randintnum = pd.concat([pd.DataFrame(x), pd.DataFrame(y)], axis=1, ignore_index=True) cent_test, result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:, 0], result_test.iloc[:, 1], c=result_test.iloc[:, -1]) plt.scatter(cent_test[:, 0], cent_test[:, 1], color='red', marker='x', s=100) ```

相关推荐

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

最新推荐

计算机基础知识学习资料.doc

计算机基础知识学习资料(zff 著)

面 向 对 象 课 程 设 计(很详细)

本次面向对象课程设计项目是由西安工业大学信息与计算科学051002班级的三名成员常丽雪、董园园和刘梦共同完成的。项目的题目是设计一个ATM银行系统,旨在通过该系统实现用户的金融交易功能。在接下来的一个星期里,我们团队共同致力于问题描述、业务建模、需求分析、系统设计等各个方面的工作。 首先,我们对项目进行了问题描述,明确了项目的背景、目的和主要功能。我们了解到ATM银行系统是一种自动提款机,用户可以通过该系统实现查询余额、取款、存款和转账等功能。在此基础上,我们进行了业务建模,绘制了系统的用例图和活动图,明确了系统与用户之间的交互流程和功能流程,为后续设计奠定了基础。 其次,我们进行了需求分析,对系统的功能性和非功能性需求进行了详细的梳理和分析。我们明确了系统的基本功能模块包括用户认证、账户管理、交易记录等,同时也考虑到了系统的性能、安全性和可靠性等方面的需求。通过需求分析,我们确立了项目的主要目标和设计方向,为系统的后续开发工作奠定了基础。 接着,我们进行了系统的分析工作,对系统进行了功能分解、结构分析和行为分析。我们对系统的各个模块进行了详细的设计,明确了模块之间的关联和交互关系,保证系统的整体性和稳定性。通过系统分析,我们为系统的设计和实现提供了详细的思路和指导,确保系统的功能和性能达到用户的需求和期望。 最后,我们进行了系统的设计工作,绘制了系统的体系结构图、类图和时序图等,明确了系统的整体架构和各个模块的具体实现方式。我们根据需求分析和系统分析的结果,结合面向对象设计的原则和方法,设计出了一个高效、稳定和灵活的ATM银行系统。通过系统设计,我们为系统的后续开发和调试提供了具体的设计方案和指导。 综上所述,通过本次面向对象课程设计项目,我们不仅学习到了面向对象设计的理论知识和实践技能,也掌握了团队合作和系统开发的经验。通过不懈努力和合作,我们成功完成了ATM银行系统的设计工作,为系统的后续开发和实现奠定了坚实的基础。希望通过这次设计项目的实践,我们能够更好地理解和应用面向对象设计的方法和思想,为未来的学习和工作打下坚实的基础。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Python标签编码错误对程序造成的影响

# 1. Python标签编码错误的介绍 #### 1.1 Python编码问题的概述 编码问题在Python开发中是一个常见而又棘手的难题。首先,我们需了解什么是编码问题,即数据在不同编码方式下出现混乱或乱码的情况。Python中对编码有着复杂的定义和处理方式。因为Python 3默认采用Unicode编码,但在实际应用中仍会遇到编码错误的情况。 #### 1.2 常见的Python编码错误 Python编码错误主要包括解析错误、UnicodeDecodeError错误和UnicodeEncodeError错误。解析错误通常是因为源代码文件的编码格式与Python解释器期望的格式不一致。

那我该怎么获取端口呢,需不需要付费之类

获取端口的方法取决于你选择的部署方式。以下是一些常见的部署选项: 1. 本地部署:如果你想在本地环境中运行 HackChat,你可以选择一个未被占用的端口号。常用的端口号范围是 1024 到 65535。确保你选择的端口没有被其他应用程序使用。 2. 云平台:如果你选择使用云平台(如 AWS、Azure、Google Cloud 等)部署 HackChat,你需要查看该云平台的文档以了解如何分配和获取端口。通常,云平台会根据你的配置为你分配一个端口号。这可能需要一些费用,具体取决于你选择的服务和计划。 3. 共享主机:如果你选择使用共享主机(如 Heroku、Netlify 等)部署 H

复杂可编程逻辑器件ppt课件.ppt

可编程逻辑器件(PLD)是一种由用户根据自己要求来构造逻辑功能的数字集成电路。与传统的具有固定逻辑功能的74系列数字电路不同,PLD本身并没有确定的逻辑功能,而是可以由用户利用计算机辅助设计,例如通过原理图或硬件描述语言(HDL)来表示设计思想。通过编译和仿真,生成相应的目标文件,再通过编程器或下载电缆将设计文件配置到目标器件中,这样可编程器件(PLD)就可以作为满足用户需求的专用集成电路使用。 在PLD的基本结构中,包括与门阵列(AND-OR array)、或门阵列(OR array)、可编程互连线路(interconnect resources)和输入/输出结构。与门阵列和或门阵列是PLD的核心部分,用于实现逻辑功能的组合,并配合互连线路连接各个部件。PLD的输入/输出结构用于与外部设备进行通信,完成数据输入和输出的功能。 除了PLD,还有复杂可编程器件(CPLD)、现场可编程门阵列(FPGA)和系统可编程逻辑器件(ispPAC)等不同类型的可编程逻辑器件。这些器件在逻辑功能实现、资源密度、时钟分配等方面有所不同,可以根据具体应用需求选择合适的器件类型。 对于可编程逻辑器件的设计流程,一般包括需求分析、设计规划、逻辑设计、综合与优化、布局布线、仿真验证和最终生成目标文件等步骤。设计师需要根据具体的需求和功能要求,使用适当的工具和方法完成各个阶段的设计工作,最终实现满足用户要求的可编程逻辑器件设计。 通过学习可编程逻辑器件的分类、特点、基本结构、工作原理和设计流程,可以更深入地了解数字集成电路的设计和实现原理,提高工程师的设计能力和应用水平。可编程逻辑器件的灵活性和可重复编程能力,使其在电子产品的设计与开发中具有重要的作用,不仅可以加快产品研发的速度,还可以降低成本和提高可维护性。 总的来说,可编程逻辑器件是一种灵活可定制的数字集成电路,可以根据用户需求实现不同的逻辑功能。通过适当的设计流程和工具支持,可以高效地完成器件的设计和验证工作,从而实现更加智能、功能更强大的电子产品。深入了解和掌握可编程逻辑器件的原理和应用,对于提升工程师的技术水平和创新能力具有重要意义。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

Python标签编码中常见错误的调试方法

![Python标签编码中常见错误的调试方法](https://img-blog.csdn.net/20180416194054338?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzIzOTUzNzE3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. 介绍 在数据处理和机器学习任务中,我们经常需要处理不同类型的数据,其中包括标签型数据。标签编码是一种常见的数据预处理技术,用来将标签型数据转换为数值型数据,从而让机器学习算法更好地理解和处理。通过标签编码,我们可

通过cos的值来求出对应的角度

要通过cos的值来求出对应的角度,可以使用反余弦函数或者arccos函数。 在大多数编程语言中,可以使用acos函数来计算反余弦。假设cos值为x,那么可以通过以下方式计算角度: 角度 = acos(x) * 180 / π 其中,acos函数返回的是弧度值,乘以180/π可以将其转换为角度值。 请注意,反余弦函数的定义域是[-1, 1],所以当cos值超出这个范围时,将无法求出对应的角度。

2021.12-2021居住客群消费趋势年报-贝壳-20页.pdf

根据《2021.12-2021居住客群消费趋势年报-贝壳研究院》的数据显示,当前中国的住房消费正处在一个新的发展阶段。随着我国告别住房短缺,消费者拥有了更多的选择权,开始在住房消费中扮演主导角色。在2020年第七次全国人口普查数据的基础上,可以看出中国人口增长率下滑,但质量却提升了,性别结构得到改善,户均规模减小,同时也出现了少儿化和老龄化并存的情况,人口进一步向经济发达区域和大都市圈城市群集聚流动分化等新特征。这些人口的新变动在多个方面推动着住房消费的升级。 人口的变化带来了住房消费领域的各种新趋势。首先,人口由“量变”转向“质变”,居民消费需求层次逐渐提高。研究表明,受教育程度与收入和消费层级呈正相关关系,即受教育程度越高、收入越高的人群越倾向于追求更高层次的消费需求。其次,年龄、性别结构的变化催生了多元化的住房消费需求。Z世代、新中产、三胎、养老等不同群体的涌现,将会在消费需求上产生显著影响。此外,流动人口规模进一步扩大,大城市、都市圈新市民对租赁和购房住房的需求也在不断增长,这表明了人口流动对住房消费市场的推动作用。 在这样的大背景下,住房消费的城市分化趋势尤为明显。人口向头部城市集中,城市群效应更加凸显,城市之间的差距也在逐渐扩大。这种城市鸿沟的存在,将进一步影响着住房消费的结构和特征。因此,在未来的住房消费市场中,头部城市将更具吸引力,消费者的偏好也将更加多样化。同时,由于人口结构和需求的复杂性,开发商和政府在规划和推动住房市场发展时需要更加灵活和多样化的策略。 综上所述,《2021.12-2021居住客群消费趋势年报-贝壳研究院》揭示了住房消费市场的新变化和趋势。随着我国人口结构的改变和消费者需求的升级,住房消费已经不再是简单的满足基本居住需求,而是涉及更多的生活方式、个性化需求和社会互动。因此,未来的住房市场需要更加注重消费者的多样性和个性化需求,同时也要在发展过程中兼顾城市之间的平衡和均衡发展,以促进整个住房消费市场的健康发展和稳定增长。