利用pytorch,写一个基于Q learning算法的车辆跟驰程序
时间: 2024-04-29 21:23:07 浏览: 61
基于pytorch实现的BiSeNet V2: Bilateral Network with Guided 可直接执行算法
首先,我们需要定义车辆跟驰问题的状态和动作。
状态:车辆之间的距离和速度差。
动作:加速或减速。
接下来,我们定义Q表格,并初始化为0。
然后,我们开始训练Q学习算法。在每一个时间步,我们根据当前状态和Q表格选择一个动作,并执行该动作。然后,我们根据新的状态和奖励更新Q表格。
奖励:如果车辆之间的距离小于安全距离,奖励为负数;否则,奖励为速度差的相反数。
最后,我们测试模型,并输出模型的平均奖励。
下面是实现代码:
```python
import torch
import numpy as np
class QLearning:
def __init__(self, state_size, action_size, learning_rate, discount_rate):
self.state_size = state_size
self.action_size = action_size
self.learning_rate = learning_rate
self.discount_rate = discount_rate
self.q_table = torch.zeros([state_size, action_size])
def choose_action(self, state, epsilon):
if np.random.uniform() < epsilon:
action = np.random.choice(self.action_size)
else:
q_values = self.q_table[state]
action = torch.argmax(q_values).item()
return action
def update_q_table(self, state, action, reward, next_state):
q_value = self.q_table[state][action]
max_q_value = torch.max(self.q_table[next_state])
new_q_value = (1 - self.learning_rate) * q_value + \
self.learning_rate * (reward + self.discount_rate * max_q_value)
self.q_table[state][action] = new_q_value
def get_reward(state):
distance, speed_diff = state
if distance < 1:
return -1
else:
return -speed_diff
def main():
env = CarFollowEnv()
state_size = 2
action_size = 2
learning_rate = 0.1
discount_rate = 0.99
epsilon = 1.0
max_epsilon = 1.0
min_epsilon = 0.01
decay_rate = 0.001
episodes = 1000
agent = QLearning(state_size, action_size, learning_rate, discount_rate)
for episode in range(1, episodes + 1):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.choose_action(state, epsilon)
next_state, reward, done = env.step(action)
agent.update_q_table(state, action, reward, next_state)
state = next_state
total_reward += reward
epsilon = min_epsilon + (max_epsilon - min_epsilon) * np.exp(-decay_rate * episode)
print(f"Episode: {episode}, Total Reward: {total_reward}")
# Testing
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.choose_action(state, 0)
next_state, reward, done = env.step(action)
state = next_state
total_reward += reward
print(f"Average Reward: {total_reward}")
class CarFollowEnv:
def __init__(self):
self.car_a_speed = 20
self.car_b_speed = 20
self.car_a_pos = 0
self.car_b_pos = 100
def reset(self):
self.car_a_speed = 20
self.car_b_speed = 20
self.car_a_pos = 0
self.car_b_pos = 100
return self.get_state()
def step(self, action):
if action == 0:
self.car_a_speed -= 1
else:
self.car_a_speed += 1
self.car_b_speed += 1
self.car_a_pos += self.car_a_speed / 10
self.car_b_pos += self.car_b_speed / 10
distance = self.car_b_pos - self.car_a_pos
speed_diff = self.car_b_speed - self.car_a_speed
state = self.get_state()
reward = get_reward(state)
done = False
if distance < 0:
done = True
return state, reward, done
def get_state(self):
distance = self.car_b_pos - self.car_a_pos
speed_diff = self.car_b_speed - self.car_a_speed
return torch.tensor([distance, speed_diff], dtype=torch.float32)
if __name__ == "__main__":
main()
```
在这个程序中,我们定义了一个车辆跟驰环境类,该类有一个reset方法用于重置环境,一个step方法用于执行动作并返回新的状态和奖励,以及一个get_state方法用于返回当前状态。我们还定义了一个get_reward方法用于计算奖励。
在主函数中,我们创建了一个QLearning对象,并开始训练。在每个时间步,我们使用epsilon-greedy策略选择一个动作,并执行该动作。然后,我们根据新的状态和奖励更新Q表格。在测试阶段,我们使用学习得到的Q表格选择动作,并计算平均奖励。
阅读全文