提供一个c++端用libtorch和Torch TensorRT加速推理torchscript模型的案例并注释
时间: 2024-06-12 14:05:57 浏览: 190
以下是一个使用libtorch和Torch TensorRT加速推理torchscript模型的C++案例:
```c++
#include <torch/script.h>
#include <iostream>
#include <memory>
#include <chrono>
#include <NvInfer.h>
#include <NvInferRuntimeCommon.h>
#include <NvInferPlugin.h>
#include <NvInferPluginUtils.h>
using namespace std::chrono;
int main(int argc, const char* argv[]) {
if (argc != 3) {
std::cerr << "Usage: " << argv[0] << " <model_path> <input_shape>" << std::endl;
return 1;
}
const std::string model_path = argv[1];
const std::string input_shape_str = argv[2];
const std::vector<int64_t> input_shape = parse_input_shape(input_shape_str);
// Load the model
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(model_path);
// Create the input tensor
torch::Tensor input = torch::randn(input_shape);
// Warm up the GPU
module->forward({input}).toTensor();
// Convert the model to TensorRT
const int max_batch_size = 1;
const int max_workspace_size = 1 << 30; // 1 GB
const int max_dla_batch_size = 0;
const int max_dla_core = -1;
const bool fp16_mode = true;
const bool int8_mode = false;
const int int8_calibration_batch_size = 0;
const std::string engine_path = "engine.trt";
nvinfer1::ICudaEngine* engine = convert_to_tensorrt(module, input_shape, max_batch_size, max_workspace_size,
max_dla_batch_size, max_dla_core, fp16_mode, int8_mode,
int8_calibration_batch_size, engine_path);
// Create execution context
nvinfer1::IExecutionContext* context = engine->createExecutionContext();
// Allocate the output tensor
std::vector<int64_t> output_shape = get_output_shape(engine, input_shape);
torch::Tensor output = torch::empty(output_shape);
// Run inference using TensorRT
auto start = high_resolution_clock::now();
std::vector<void*> buffers(2);
const int input_index = engine->getBindingIndex("input");
const int output_index = engine->getBindingIndex("output");
buffers[input_index] = input.data_ptr();
buffers[output_index] = output.data_ptr();
context->executeV2(buffers.data());
auto stop = high_resolution_clock::now();
auto duration = duration_cast<microseconds>(stop - start);
std::cout << "Inference time: " << duration.count() << " microseconds" << std::endl;
// Verify the output
torch::Tensor expected_output = module->forward({input}).toTensor();
assert(torch::allclose(output, expected_output, 1e-3, 1e-3));
// Clean up
context->destroy();
engine->destroy();
return 0;
}
```
代码中的 `parse_input_shape`、`convert_to_tensorrt`、`get_output_shape` 是一些辅助函数,用于解析输入形状,将模型转换为TensorRT引擎和获取输出形状。这些函数的实现可以参考官方文档。
使用时,需要在命令行中指定模型路径和输入形状,例如:`./my_app my_model.pt 1,3,224,224`。程序会自动将模型转换为TensorRT引擎,并运行推理。最后,程序会验证TensorRT输出是否与PyTorch输出一致,以确保结果正确。
阅读全文