曲线x=arctant y=ln根号1+t^2上对应于t=1的点处的法线方程
时间: 2024-04-05 18:34:53 浏览: 108
首先,求出曲线在$t=1$处的点坐标$(x_0,y_0)$。将$t=1$代入$x=\arctan{t}$和$y=\ln\sqrt{1+t^2}$中,得到$x_0=\frac{\pi}{4}$和$y_0=0$。
接下来,求出曲线在$t=1$处的斜率$k$。由于法线垂直于曲线,因此法线的斜率$k_n$等于曲线在该点处的斜率$k$的相反数的倒数,即$k_n=-\frac{1}{k}$。对于曲线$x=\arctan{t}$和$y=\ln\sqrt{1+t^2}$,可以通过求导来求得其斜率:
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1}{1+t^2} \cdot \frac{2t}{1+t^2} = \frac{2t}{(1+t^2)^2}$$
在$t=1$处,曲线的斜率$k$为$\frac{2}{4}=\frac{1}{2}$。因此,法线的斜率$k_n=-\frac{1}{k}=-2$。
最后,根据点斜式可得,法线方程为:
$$y - y_0 = k_n(x - x_0) \Rightarrow y = -2(x-\frac{\pi}{4})$$
因此,曲线$x=\arctan{t}$和$y=\ln\sqrt{1+t^2}$在$t=1$处的法线方程为$y=-2(x-\frac{\pi}{4})$。
阅读全文