def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes super(Model, self).__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.load(f, Loader=yaml.FullLoader)
时间: 2024-02-14 08:32:20 浏览: 272
yolov5s.tar.gz
这段代码是Yolov5模型的初始化函数,其中包含了一些参数和操作,具体解释如下:
- `def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None):`:初始化函数,包含三个参数,分别是配置文件路径`cfg`、输入图像通道数`ch`和目标类别数`nc`。
- `super(Model, self).__init__():`:调用父类的初始化函数,继承父类的属性和方法。
- `if isinstance(cfg, dict):`:判断配置文件是否为字典类型,如果是,则直接使用该字典作为模型配置。
- `else: # is *.yaml`:否则,读取配置文件路径,使用`yaml`库加载配置文件。
- `with open(cfg) as f:`:打开配置文件。
- `self.yaml = yaml.load(f, Loader=yaml.FullLoader)`:使用`yaml`库加载配置文件,得到配置文件的字典格式。
总的来说,这段代码的主要作用是读取Yolov5模型的配置文件,初始化模型的参数和结构。通过配置文件,可以灵活地设置模型的参数,从而满足不同的应用需求。
阅读全文