Python实现利用人工蜂群算法优化求解TSP
时间: 2023-06-29 10:09:32 浏览: 402
人工蜂群算法(Artificial Bee Colony Algorithm,ABC)是一种群体智能算法,可以用于求解优化问题。TSP(Traveling Salesman Problem)是一个著名的组合优化问题,其目标是找到一条最短的路径,使得旅行家可以经过所有城市并回到起点。
下面是利用 Python 实现人工蜂群算法优化求解 TSP 的步骤:
1. 定义问题:TSP 问题可以表示为一个图,其中每个城市表示一个节点,城市之间的距离表示边。我们需要找到一条路径,使得经过每个节点一次并返回起点的路径长度最小。
2. 定义蜜蜂:在 ABC 算法中,有三种蜜蜂:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。我们可以用 Python 类来表示这些蜜蜂。
3. 初始化蜜蜂群体:我们需要初始化一群雇佣蜜蜂,每个雇佣蜜蜂都代表一条路径。我们可以随机生成一些路径作为初始路径。
4. 计算适应度:我们需要计算每个雇佣蜜蜂的适应度,即路径长度。我们可以使用 TSP 问题中的欧几里得距离公式来计算两个城市之间的距离。
5. 进行搜索:在搜索过程中,我们需要让雇佣蜜蜂和侦查蜜蜂搜索新的解,并交换信息。我们还需要让观察蜜蜂选择最优解并更新雇佣蜜蜂的位置。
6. 更新最优解:我们需要记录最优路径和最优路径长度。
7. 停止条件:我们可以设置一个停止条件,例如连续多次迭代后最优解没有发生变化,或者达到了预设的迭代次数。
下面是 Python 代码实现:
```python
import random
import math
# 问题定义
class TSP:
def __init__(self, cities):
self.cities = cities
self.n = len(cities)
def distance(self, i, j):
xi, yi = self.cities[i]
xj, yj = self.cities[j]
return math.sqrt((xi-xj)**2 + (yi-yj)**2)
def path_length(self, path):
return sum([self.distance(path[i], path[(i+1)%self.n]) for i in range(self.n)])
# 蜜蜂类
class Bee:
def __init__(self, path):
self.path = path
self.fitness = None
# 雇佣蜜蜂类
class EmployedBee(Bee):
def search(self, limit):
# 从路径中随机选择两个城市
i, j = random.sample(range(len(self.path)), 2)
# 生成新解
new_path = self.path.copy()
new_path[i], new_path[j] = new_path[j], new_path[i]
# 计算适应度
new_fitness = problem.path_length(new_path)
# 如果新解更优,则更新
if new_fitness < self.fitness:
self.path = new_path
self.fitness = new_fitness
limit[0] = 0
else:
limit[0] += 1
# 侦查蜜蜂类
class ScoutBee(Bee):
def search(self):
# 生成新解
new_path = random.sample(self.path, len(self.path))
# 计算适应度
new_fitness = problem.path_length(new_path)
# 更新解
self.path = new_path
self.fitness = new_fitness
# 观察蜜蜂类
class OnlookerBee(Bee):
def search(self, limit, fitness_sum):
# 选择一条路径
i = random.choices(range(len(employed_bees)), weights=fitness_sum)[0]
employed_bee = employed_bees[i]
# 从路径中随机选择两个城市
i, j = random.sample(range(len(employed_bee.path)), 2)
# 生成新解
new_path = employed_bee.path.copy()
new_path[i], new_path[j] = new_path[j], new_path[i]
# 计算适应度
new_fitness = problem.path_length(new_path)
# 如果新解更优,则更新
if new_fitness < self.fitness:
self.path = new_path
self.fitness = new_fitness
employed_bee.path = new_path
employed_bee.fitness = new_fitness
limit[0] = 0
else:
limit[0] += 1
# 初始化问题和蜜蜂
cities = [(random.uniform(0, 1), random.uniform(0, 1)) for _ in range(20)]
problem = TSP(cities)
employed_bees = [EmployedBee(random.sample(range(problem.n), problem.n)) for _ in range(10)]
scout_bees = [ScoutBee(random.sample(range(problem.n), problem.n)) for _ in range(10)]
onlooker_bees = [OnlookerBee(random.sample(range(problem.n), problem.n)) for _ in range(10)]
# 迭代搜索
best_path = None
best_fitness = math.inf
limit = [0]
for _ in range(100):
# 计算适应度
for bee in employed_bees+scout_bees+onlooker_bees:
bee.fitness = problem.path_length(bee.path)
fitness_sum = [sum([1/bee.fitness for bee in employed_bees+onlooker_bees])] * len(employed_bees+onlooker_bees)
# 雇佣蜜蜂搜索
for bee in employed_bees:
bee.search(limit)
# 侦查蜜蜂搜索
for bee in scout_bees:
bee.search()
# 观察蜜蜂搜索
for bee in onlooker_bees:
bee.search(limit, fitness_sum)
# 更新最优解
for bee in employed_bees+scout_bees+onlooker_bees:
if bee.fitness < best_fitness:
best_path = bee.path
best_fitness = bee.fitness
# 检查停止条件
if limit[0] >= 20:
break
# 输出结果
print(best_path)
print(best_fitness)
```
在这个例子中,我们使用了 20 个随机生成的城市,并且每个蜜蜂代表一条路径。我们迭代了 100 次,并记录了最优路径和最优路径长度。最后,我们输出了最优路径和最优路径长度。
阅读全文