给出一个以ResNet为模型的具有三特征输入{x,y,z}三输出{t1,t2,t3}的使用pytorch的train_dataset和test_dataset代码
时间: 2023-05-29 10:08:04 浏览: 239
pytorch环境下ResNet示例代码
以下是一个以ResNet模型为基础,具有三个特征输入{x, y, z}和三个输出{t1, t2, t3}的train_dataset和test_dataset的pytorch代码:
```
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
class CustomDataset(Dataset):
def __init__(self, data, targets, transform=None):
self.data = data
self.targets = targets
self.transform = transform
def __getitem__(self, index):
x = self.data[index]
y = self.targets[index]
if self.transform:
x = self.transform(x)
t1 = y[0]
t2 = y[1]
t3 = y[2]
return x, t1, t2, t3
def __len__(self):
return len(self.data)
# Create train and test datasets
train_data = np.random.rand(100, 3) # 100 samples with 3 features
train_targets = np.random.rand(100, 3) # 100 samples with 3 targets
train_dataset = CustomDataset(train_data, train_targets)
test_data = np.random.rand(50, 3) # 50 samples with 3 features
test_targets = np.random.rand(50, 3) # 50 samples with 3 targets
test_dataset = CustomDataset(test_data, test_targets)
# Create dataloaders
train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=10, shuffle=False)
# Define the ResNet model
import torch.nn as nn
import torch.nn.functional as F
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 3)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x1 = self.fc3(x)
x2 = self.fc3(x)
x3 = self.fc3(x)
return x1, x2, x3
# Train the model
model = ResNet()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10): # train for 10 epochs
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, t1, t2, t3 = data
optimizer.zero_grad()
outputs1, outputs2, outputs3 = model(inputs.float())
loss = criterion(outputs1, t1.float()) + criterion(outputs2, t2.float()) + criterion(outputs3, t3.float())
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9: # print every 10 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
# Test the model
with torch.no_grad():
total_loss = 0.0
for i, data in enumerate(test_loader, 0):
inputs, t1, t2, t3 = data
outputs1, outputs2, outputs3 = model(inputs.float())
loss = criterion(outputs1, t1.float()) + criterion(outputs2, t2.float()) + criterion(outputs3, t3.float())
total_loss += loss.item()
print('Test loss: %.3f' % (total_loss / len(test_loader)))
```
在这个例子中,我们使用了一个ResNet模型,它有三个输出,每个输出都对应于一个目标。我们还定义了一个CustomDataset类,它将数据和目标作为输入,并将它们打包成一个元组。最后,我们使用DataLoader类将数据集加载到模型中进行训练和测试。
阅读全文