ncc template matching_
时间: 2023-05-15 18:01:59 浏览: 123
NCC模板匹配是一种基于归一化互相关的模板匹配方法。它是一种常用的计算机视觉算法,用于在图像中查找与给定模板相匹配的位置。NCC模板匹配可以用于人脸识别、手写数字识别、图像跟踪、运动检测等方面。
NCC模板匹配的原理是将模板图像与待匹配图像进行归一化互相关运算,找到使相关值最大的位置,即为模板在待匹配图像中的位置。该算法的优点是对图像灰度变化和缩放具有较高的鲁棒性,因此在实际应用中能够取得不错的匹配效果。
在实际应用中,NCC模板匹配需要选择合适的阈值来确定匹配结果,以避免误匹配和漏匹配,需要给定一定的匹配模板进行匹配,因此对于复杂场景的图像匹配效果会受到一定的影响。在解决这些问题的同时,NCC模板匹配还需要考虑算法的实时性和鲁棒性,以满足在特定应用场景下的需要。
总之,NCC模板匹配是一种简单、高效、鲁棒性较强的图像匹配方法,它在视觉检测和识别领域中有着广泛的应用前景。
相关问题
ncc模板匹配代码python
好的,我可以提供一些关于ncc模板匹配的Python代码参考:
```
import cv2
import numpy as np
def ncc_template_matching(image, template):
# Convert the image and template to grayscale
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
temp_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
# Compute the mean of the image and the template
img_mean = np.mean(img_gray)
temp_mean = np.mean(temp_gray)
# Compute the normalized cross-correlation
ncc = cv2.matchTemplate(img_gray, temp_gray, cv2.TM_CCORR_NORMED)
# Find the location of the maximum correlation value
_, _, _, max_loc = cv2.minMaxLoc(ncc)
# Compute the offset of the template from the image
x_offset = max_loc[0] - int(template.shape[1] / 2)
y_offset = max_loc[1] - int(template.shape[0] / 2)
# Return the offset and correlation value
return x_offset, y_offset, ncc[max_loc[1], max_loc[0]]
# Example usage
image = cv2.imread('image.jpg')
template = cv2.imread('template.jpg')
x_offset, y_offset, correlation = ncc_template_matching(image, template)
print(f"Template matched with correlation {correlation} at ({x_offset},{y_offset})")
```
这段代码使用了OpenCV库中的`matchTemplate`函数来实现NCC模板匹配。该函数返回了一个矩阵,其中每个像素表示该位置与模板的相似度。我们通过寻找矩阵中的最大值来确定模板在图像中的位置。最后,我们可以计算出模板与图像的相对偏移,并返回相关系数作为匹配分数。
希望这能对你有所帮助。
opencvsharp 多线程NCC亚像素匹配
OpenCvSharp 是一个基于 OpenCV 的 C# 封装库,可以帮助开发者使用 C# 编写 OpenCV 应用程序。多线程 NCC 亚像素匹配可以提高匹配的速度和精度。以下是一个示例代码:
```csharp
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace OpenCvSharp_MultiThreaded_NCC_SubPixel_Matching
{
class Program
{
static void Main(string[] args)
{
Mat image1 = Cv2.ImRead("image1.png", ImreadModes.GrayScale);
Mat image2 = Cv2.ImRead("image2.png", ImreadModes.GrayScale);
// 创建输出图像
Mat result = Mat.Zeros(image1.Rows, image1.Cols, MatType.CV_32F);
// 定义块大小
int block_size = 21;
// 定义搜索范围
int search_range = 25;
// 定义阈值
double threshold = 0.98;
// 创建 NCCMatcher 对象
NccMatcher ncc_matcher = new NccMatcher(image1, block_size, search_range, threshold);
// 定义线程数
int num_threads = 4;
// 创建线程池
Task[] tasks = new Task[num_threads];
// 定义线程块大小
int block_height = image1.Rows / num_threads;
// 分配任务
for (int i = 0; i < num_threads; i++)
{
int start_row = i * block_height;
int end_row = (i == num_threads - 1) ? image1.Rows : (i + 1) * block_height;
tasks[i] = Task.Factory.StartNew(() => {
for (int row = start_row; row < end_row; row++)
{
for (int col = 0; col < image1.Cols; col++)
{
// 计算亚像素匹配
Point2f match_location = ncc_matcher.Match(image2, new Point2f(col, row));
// 设置匹配结果
result.At<float>(row, col) = match_location.X;
}
}
});
}
// 等待所有任务完成
Task.WaitAll(tasks);
// 显示结果
Cv2.ImShow("Result", result);
Cv2.WaitKey(0);
}
}
class NccMatcher
{
private Mat image1;
private int block_size;
private int search_range;
private double threshold;
public NccMatcher(Mat image1, int block_size, int search_range, double threshold)
{
this.image1 = image1;
this.block_size = block_size;
this.search_range = search_range;
this.threshold = threshold;
}
public Point2f Match(Mat image2, Point2f location)
{
// 定义搜索范围
Rect search_window = new Rect(
(int)(location.X - search_range / 2),
(int)(location.Y - search_range / 2),
search_range,
search_range);
// 检查搜索范围是否越界
search_window.X = Math.Max(search_window.X, 0);
search_window.Y = Math.Max(search_window.Y, 0);
search_window.Width = Math.Min(search_window.Width, image2.Cols - search_window.X);
search_window.Height = Math.Min(search_window.Height, image2.Rows - search_window.Y);
// 获取模板块
Mat template_block = image1.SubMat(
new Rect(
(int)(location.X - block_size / 2),
(int)(location.Y - block_size / 2),
block_size,
block_size));
// 初始化最大相关系数和匹配位置
double max_ncc = -1;
Point2f max_location = new Point2f(-1, -1);
// 遍历搜索范围
for (int row = search_window.Y; row < search_window.Y + search_window.Height - block_size; row++)
{
for (int col = search_window.X; col < search_window.X + search_window.Width - block_size; col++)
{
// 获取窗口块
Mat window_block = image2.SubMat(
new Rect(col, row, block_size, block_size));
// 计算 NCC
double ncc = CalculateNcc(template_block, window_block);
// 如果 NCC 大于阈值并且大于当前最大值,则更新最大值和最大位置
if (ncc > threshold && ncc > max_ncc)
{
max_ncc = ncc;
max_location.X = col + block_size / 2.0f;
max_location.Y = row + block_size / 2.0f;
}
}
}
return max_location;
}
private double CalculateNcc(Mat image1, Mat image2)
{
// 计算均值
Scalar mean1 = Cv2.Mean(image1);
Scalar mean2 = Cv2.Mean(image2);
// 计算标准差
Scalar std1, std2;
Cv2.MeanStdDev(image1, out mean1, out std1);
Cv2.MeanStdDev(image2, out mean2, out std2);
// 计算协方差矩阵
Mat covar = new Mat();
Cv2.CalcCovarMatrix(new Mat[] { image1, image2 }, covar, 0, CovarFlags.Normal | CovarFlags.Scale);
// 计算相关系数
double ncc = covar.At<double>(0, 1) / (std1.Val0 * std2.Val0);
return ncc;
}
}
}
```
在这个示例代码中,我们使用了多线程来加速 NCC 亚像素匹配。我们将图像分成若干个块,在不同的线程中处理不同的块。由于每个线程只处理一部分图像,因此可以大大提高匹配的速度。
阅读全文