def Process(img): # 高斯平滑 gaussian = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT) # 中值滤波 median = cv2.medianBlur(gaussian, 5) # Sobel算子 # 梯度方向: x sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3) # 二值化 ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY) # 核函数 element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1)) element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7)) # 膨胀 dilation = cv2.dilate(binary, element2, iterations=1) # 腐蚀 erosion = cv2.erode(dilation, element1, iterations=1) # 膨胀 dilation2 = cv2.dilate(erosion, element2, iterations=3) return dilation2 def GetRegion(img): regions = [] # 查找轮廓 contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if (area < 7500): continue eps = 1e-3 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, eps, True) rect = cv2.minAreaRect(contour) box = cv2.boxPoints(rect) box = np.int0(box) height = abs(box[0][1] - box[2][1]) width = abs(box[0][0] - box[2][0]) ratio =float(width) / float(height) if (ratio < 6 and ratio > 1.8): regions.append(box) return regions def detect(img): # 灰度化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) prc = Process(gray) regions = GetRegion(prc) print('[INFO]:Detect %d license plates' % len(regions)) for box in regions: cv2.drawContours(img, [box], 0, (0, 0,255), 2) cv2.imwrite(r'C:\Users\gzy\Pictures\Saved Pictures\xiaoguotu.png', img) cv2.waitKey(0) cv2.destroyAllWindows()请简单描述一下该代码是如何实现车牌检测功能的
时间: 2024-04-27 11:22:54 浏览: 115
这段代码使用了一系列图像处理技术实现了车牌检测功能。主要流程如下:
1. 对输入的彩色图像进行灰度化处理。
2. 对灰度图像进行高斯平滑和中值滤波处理,以降低噪声干扰。
3. 使用 Sobel 算子提取图像的边缘信息。
4. 对边缘信息进行二值化处理。
5. 使用形态学操作(膨胀和腐蚀)对二值化图像进行处理,进一步增强车牌的特征。
6. 对处理后的图像进行轮廓检测,并筛选出符合车牌特征的轮廓。
7. 在原图中标识出车牌位置,最终输出标识了车牌位置的图像。
具体实现细节可以参考代码中的注释。
阅读全文