用verilog编程语言写一个czt算法程序
时间: 2023-07-15 16:15:38 浏览: 110
抱歉,我是一个自然语言处理模型,无法编写代码。但我可以提供一些思路。
CZT(Chirp Z-transform)算法是一种频域分析方法,它可以将时域信号转换为频域信号。下面是一个用Verilog编写CZT算法的示例代码:
```verilog
module czt(
input clk,
input rst_n,
input signed [15:0] din_real,
input signed [15:0] din_imag,
output signed [15:0] dout_real,
output signed [15:0] dout_imag
);
// Define constants
parameter N = 1024;
parameter M = 10;
// Define internal variables
reg signed [15:0] x_real[N];
reg signed [15:0] x_imag[N];
reg signed [15:0] w_real[N];
reg signed [15:0] w_imag[N];
reg signed [15:0] y_real[N];
reg signed [15:0] y_imag[N];
reg signed [15:0] z_real[N];
reg signed [15:0] z_imag[N];
// Define internal signals
wire [M-1:0] addr;
wire [M-1:0] addr_rev;
wire [M-1:0] step;
wire [M-1:0] step_rev;
wire [M-1:0] omega_real;
wire [M-1:0] omega_imag;
wire [M-1:0] twiddle_real;
wire [M-1:0] twiddle_imag;
wire [M-1:0] temp_real;
wire [M-1:0] temp_imag;
wire [M-1:0] index;
// Define address generator
counter addr_gen(
.clk(clk),
.rst_n(rst_n),
.load(N),
.incr(1),
.addr(addr)
);
// Define reverse address generator
counter addr_rev_gen(
.clk(clk),
.rst_n(rst_n),
.load(N),
.incr(-1),
.addr(addr_rev)
);
// Define step generator
counter step_gen(
.clk(clk),
.rst_n(rst_n),
.load(M),
.incr(1),
.addr(step)
);
// Define reverse step generator
counter step_rev_gen(
.clk(clk),
.rst_n(rst_n),
.load(M),
.incr(-1),
.addr(step_rev)
);
// Define omega generator
omega_gen omega_real_gen(
.clk(clk),
.rst_n(rst_n),
.load(N),
.addr(addr),
.omega(omega_real)
);
// Define imaginary omega generator
omega_gen omega_imag_gen(
.clk(clk),
.rst_n(rst_n),
.load(N),
.addr(addr),
.omega(omega_imag),
.imag(1)
);
// Define twiddle factor generator
twiddle_gen twiddle_real_gen(
.clk(clk),
.rst_n(rst_n),
.load(M),
.addr(step),
.twiddle(twiddle_real)
);
// Define imaginary twiddle factor generator
twiddle_gen twiddle_imag_gen(
.clk(clk),
.rst_n(rst_n),
.load(M),
.addr(step),
.twiddle(twiddle_imag),
.imag(1)
);
// Define complex multiplier
complex_mult mult(
.x_real(x_real[index]),
.x_imag(x_imag[index]),
.y_real(omega_real[index]),
.y_imag(omega_imag[index]),
.z_real(temp_real[index]),
.z_imag(temp_imag[index])
);
// Define complex adder
complex_add add(
.x_real(y_real[index]),
.x_imag(y_imag[index]),
.y_real(z_real[index]),
.y_imag(z_imag[index]),
.z_real(y_real[index]),
.z_imag(y_imag[index])
);
// Assign input signals to internal variables
always @ (posedge clk) begin
if (!rst_n) begin
x_real <= '0;
x_imag <= '0;
w_real <= '0;
w_imag <= '0;
y_real <= '0;
y_imag <= '0;
z_real <= '0;
z_imag <= '0;
end else begin
x_real[N-1:0] <= {din_real, x_real[N-1:1]};
x_imag[N-1:0] <= {din_imag, x_imag[N-1:1]};
end
end
// Generate twiddle factors
always @ (posedge clk) begin
if (!rst_n) begin
w_real <= '0;
w_imag <= '0;
end else if (step[M-1] == 1'b1) begin
w_real[M-1:0] <= twiddle_real[M-1:0];
w_imag[M-1:0] <= twiddle_imag[M-1:0];
end
end
// Generate complex multiplication results
always @ (posedge clk) begin
if (!rst_n) begin
temp_real <= '0;
temp_imag <= '0;
end else if (step[M-1] == 1'b1) begin
for (i = 0; i < N; i++) begin
index <= addr[i] ^ step_rev[i];
temp_real[i] <= w_real[step[i]] * x_real[index] - w_imag[step[i]] * x_imag[index];
temp_imag[i] <= w_real[step[i]] * x_imag[index] + w_imag[step[i]] * x_real[index];
end
end
end
// Generate complex addition results
always @ (posedge clk) begin
if (!rst_n) begin
y_real <= '0;
y_imag <= '0;
end else if (step[M-1] == 1'b1) begin
for (i = 0; i < N; i++) begin
index <= addr[i] ^ step_rev[i];
y_real[i] <= y_real[i] + temp_real[i];
y_imag[i] <= y_imag[i] + temp_imag[i];
end
end
end
// Assign output signals
assign dout_real = y_real[N-1:0];
assign dout_imag = y_imag[N-1:0];
endmodule
// Define counter module
module counter(
input clk,
input rst_n,
input [M-1:0] load,
input [M-1:0] incr,
output [M-1:0] addr
);
// Define internal variables
reg [M-1:0] count;
// Assign output signal
assign addr = count;
// Generate counter logic
always @ (posedge clk) begin
if (!rst_n) begin
count <= '0;
end else begin
count <= count + incr;
if (count >= load) begin
count <= count - load;
end
end
end
endmodule
// Define omega generator module
module omega_gen(
input clk,
input rst_n,
input [M-1:0] load,
input [M-1:0] addr,
output reg signed [15:0] omega,
input signed [15:0] imag = 0
);
// Define internal variables
reg signed [15:0] cos_val;
reg signed [15:0] sin_val;
// Generate omega values
always @ (posedge clk) begin
if (!rst_n) begin
omega <= '0;
end else if (addr[M-1] == 1'b1) begin
cos_val = $cos(2 * $pi * addr / load);
sin_val = $sin(2 * $pi * addr / load);
omega = {cos_val, sin_val} + {imag, 0};
end
end
endmodule
// Define twiddle factor generator module
module twiddle_gen(
input clk,
input rst_n,
input [M-1:0] load,
input [M-1:0] addr,
output reg signed [15:0] twiddle,
input signed [15:0] imag = 0
);
// Define internal variables
reg signed [15:0] cos_val;
reg signed [15:0] sin_val;
// Generate twiddle factor values
always @ (posedge clk) begin
if (!rst_n) begin
twiddle <= '0;
end else if (addr[M-1] == 1'b1) begin
cos_val = $cos(-2 * $pi * addr / load);
sin_val = $sin(-2 * $pi * addr / load);
twiddle = {cos_val, sin_val} + {imag, 0};
end
end
endmodule
// Define complex multiplier module
module complex_mult(
input signed [15:0] x_real,
input signed [15:0] x_imag,
input signed [15:0] y_real,
input signed [15:0] y_imag,
output reg signed [15:0] z_real,
output reg signed [15:0] z_imag
);
// Generate complex multiplication results
always @ (*) begin
z_real = x_real * y_real - x_imag * y_imag;
z_imag = x_real * y_imag + x_imag * y_real;
end
endmodule
// Define complex adder module
module complex_add(
input signed [15:0] x_real,
input signed [15:0] x_imag,
input signed [15:0] y_real,
input signed [15:0] y_imag,
output reg signed [15:0] z_real,
output reg signed [15:0] z_imag
);
// Generate complex addition results
always @ (*) begin
z_real = x_real + y_real;
z_imag = x_imag + y_imag;
end
endmodule
```
这个代码基于一个时钟和重置信号,以及输入和输出信号来实现CZT算法。它使用了一个计数器模块来生成地址,一个正弦余弦函数模块来生成omega和twiddle系数,以及一个复数乘法器和加法器模块来实现复数乘法和加法。该代码可以通过仿真或FPGA实现来验证其正确性和性能。
阅读全文