基于pytorch的sac连续空间的算法,并输出每个网络训练模型pth文件的代码。要求给出例程分段展示这个算法,并对该算法进行解释
时间: 2024-05-16 22:12:56 浏览: 145
好的,让我们来介绍SAC算法,它是一种用于解决连续控制问题的深度强化学习算法,它的全称是Soft Actor-Critic。
SAC算法的核心思想是在原来的Actor-Critic算法的基础上,加入了熵的概念,通过控制策略分布的熵来达到探索和稳定性的平衡。具体来说,SAC算法通过最小化策略熵和Q值的误差来进行优化,同时使用一个目标网络来减少Q值的估计误差。
下面是基于PyTorch的SAC算法的训练代码,其中包括了网络的定义和训练过程中的优化器和损失函数的定义。该代码使用了Gym环境来进行测试。
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import gym
class QNet(nn.Module):
def __init__(self, state_dim, action_dim):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class PolicyNet(nn.Module):
def __init__(self, state_dim, action_dim, action_range):
super(PolicyNet, self).__init__()
self.fc1 = nn.Linear(state_dim, 256)
self.fc2 = nn.Linear(256, 256)
self.mean_fc = nn.Linear(256, action_dim)
self.log_std_fc = nn.Linear(256, action_dim)
self.action_range = action_range
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
mean = self.mean_fc(x)
log_std = self.log_std_fc(x)
log_std = torch.clamp(log_std, min=-20, max=2)
std = torch.exp(log_std)
return mean, std
def sample(self, state):
mean, std = self.forward(state)
normal = torch.distributions.Normal(mean, std)
x_t = normal.rsample()
action = torch.tanh(x_t) * self.action_range
log_prob = normal.log_prob(x_t)
log_prob -= torch.log(1 - action.pow(2) + 1e-6)
log_prob = log_prob.sum(1, keepdim=True)
return action, log_prob, x_t, mean, std
class SAC:
def __init__(self, state_dim, action_dim, action_range):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.q1_net = QNet(state_dim, action_dim).to(self.device)
self.q2_net = QNet(state_dim, action_dim).to(self.device)
self.target_q1_net = QNet(state_dim, action_dim).to(self.device)
self.target_q2_net = QNet(state_dim, action_dim).to(self.device)
self.policy_net = PolicyNet(state_dim, action_dim, action_range).to(self.device)
self.target_policy_net = PolicyNet(state_dim, action_dim, action_range).to(self.device)
self.target_q1_net.load_state_dict(self.q1_net.state_dict())
self.target_q2_net.load_state_dict(self.q2_net.state_dict())
self.target_policy_net.load_state_dict(self.policy_net.state_dict())
self.q1_optimizer = optim.Adam(self.q1_net.parameters(), lr=3e-4)
self.q2_optimizer = optim.Adam(self.q2_net.parameters(), lr=3e-4)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=3e-4)
self.replay_buffer = []
self.replay_buffer_size = 1000000
self.batch_size = 256
self.discount = 0.99
self.tau = 0.005
self.alpha = 0.2
self.action_range = action_range
self.total_steps = 0
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action, _, _, _, _ = self.policy_net.sample(state)
return action.cpu().detach().numpy()[0]
def save_model(self, save_path):
torch.save(self.q1_net.state_dict(), save_path + '_q1.pth')
torch.save(self.q2_net.state_dict(), save_path + '_q2.pth')
torch.save(self.policy_net.state_dict(), save_path + '_policy.pth')
def load_model(self, save_path):
self.q1_net.load_state_dict(torch.load(save_path + '_q1.pth'))
self.q2_net.load_state_dict(torch.load(save_path + '_q2.pth'))
self.policy_net.load_state_dict(torch.load(save_path + '_policy.pth'))
def update(self):
if len(self.replay_buffer) < self.batch_size:
return
self.total_steps += 1
batch = random.sample(self.replay_buffer, self.batch_size)
state = torch.FloatTensor([e[0] for e in batch]).to(self.device)
action = torch.FloatTensor([e[1] for e in batch]).to(self.device)
next_state = torch.FloatTensor([e[2] for e in batch]).to(self.device)
reward = torch.FloatTensor([e[3] for e in batch]).unsqueeze(1).to(self.device)
mask = torch.FloatTensor([e[4] for e in batch]).unsqueeze(1).to(self.device)
with torch.no_grad():
_, next_state_log_prob, _, _, _ = self.policy_net.sample(next_state)
next_q_value = torch.min(self.target_q1_net(next_state, self.target_policy_net.sample(next_state)[0]),
self.target_q2_net(next_state, self.target_policy_net.sample(next_state)[0]))
next_q_value = next_q_value - self.alpha * next_state_log_prob
expected_q_value = reward + mask * self.discount * next_q_value
q1_value = self.q1_net(state, action)
q2_value = self.q2_net(state, action)
q1_loss = F.mse_loss(q1_value, expected_q_value)
q2_loss = F.mse_loss(q2_value, expected_q_value)
policy_action, log_prob, _, _, _ = self.policy_net.sample(state)
q1_new = self.q1_net(state, policy_action)
q2_new = self.q2_net(state, policy_action)
policy_loss = ((self.alpha * log_prob) - torch.min(q1_new, q2_new)).mean()
self.q1_optimizer.zero_grad()
q1_loss.backward()
self.q1_optimizer.step()
self.q2_optimizer.zero_grad()
q2_loss.backward()
self.q2_optimizer.step()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
for target_param, param in zip(self.target_q1_net.parameters(), self.q1_net.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.target_q2_net.parameters(), self.q2_net.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
def train(self, env, max_steps):
state = env.reset()
episode_reward = 0
for step in range(max_steps):
action = self.get_action(state)
next_state, reward, done, info = env.step(action)
mask = 0 if done else 1
self.replay_buffer.append((state, action, next_state, reward, mask))
if len(self.replay_buffer) > self.replay_buffer_size:
self.replay_buffer.pop(0)
episode_reward += reward
state = next_state
self.update()
if done:
state = env.reset()
print("Episode reward:", episode_reward)
episode_reward = 0
```
以上是SAC算法的训练代码,其中主要包括了两个神经网络模型,一个是Q网络,一个是策略网络。此外,还包括了优化器、损失函数、经验回放池和训练过程的相关参数。
最后,我们可以通过以下代码来训练并保存模型:
```python
env = gym.make('Pendulum-v0')
model = SAC(env.observation_space.shape[0], env.action_space.shape[0], env.action_space.high[0])
model.train(env, 100000)
model.save_model('sac')
```
以上代码中,我们使用了Gym库中的Pendulum环境来进行测试,并且使用模型训练了100000个步骤。训练完成后,我们可以使用`save_model`方法将训练好的模型保存到本地。
阅读全文