我需要一个基于pytorch使用UNET完成全景图像拼接的代码 要求输入图片,并且生成拼接之后的图片
时间: 2024-05-06 15:16:14 浏览: 167
基于Pytorch的UNet语义分割模型与代码
好的,下面是一个基于 PyTorch 实现的 UNet 模型,可以用于全景图像拼接任务。代码中使用了 torchvision 库中的 transforms 和 datasets 模块来加载数据集,使用了 PyTorch 自带的 nn 模块来定义模型,使用了 torch.utils.data 模块来定义数据加载器,使用了 torch.optim 模块来定义优化器。
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam
from torchvision import transforms, datasets
# 定义 UNet 模型
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_1 = nn.Conv2d(512, 1024, 3, padding=1)
self.conv5_2 = nn.Conv2d(1024, 1024, 3, padding=1)
self.upconv6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.conv6_1 = nn.Conv2d(1024, 512, 3, padding=1)
self.conv6_2 = nn.Conv2d(512, 512, 3, padding=1)
self.upconv7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv7_1 = nn.Conv2d(512, 256, 3, padding=1)
self.conv7_2 = nn.Conv2d(256, 256, 3, padding=1)
self.upconv8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv8_1 = nn.Conv2d(256, 128, 3, padding=1)
self.conv8_2 = nn.Conv2d(128, 128, 3, padding=1)
self.upconv9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv9_1 = nn.Conv2d(128, 64, 3, padding=1)
self.conv9_2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv10 = nn.Conv2d(64, 3, 1)
def forward(self, x):
# Encoder
x1 = F.relu(self.conv1_1(x))
x1 = F.relu(self.conv1_2(x1))
x2 = F.max_pool2d(x1, 2)
x2 = F.relu(self.conv2_1(x2))
x2 = F.relu(self.conv2_2(x2))
x3 = F.max_pool2d(x2, 2)
x3 = F.relu(self.conv3_1(x3))
x3 = F.relu(self.conv3_2(x3))
x4 = F.max_pool2d(x3, 2)
x4 = F.relu(self.conv4_1(x4))
x4 = F.relu(self.conv4_2(x4))
x5 = F.max_pool2d(x4, 2)
x5 = F.relu(self.conv5_1(x5))
x5 = F.relu(self.conv5_2(x5))
# Decoder
x6 = self.upconv6(x5)
x6 = torch.cat([x6, x4], 1)
x6 = F.relu(self.conv6_1(x6))
x6 = F.relu(self.conv6_2(x6))
x7 = self.upconv7(x6)
x7 = torch.cat([x7, x3], 1)
x7 = F.relu(self.conv7_1(x7))
x7 = F.relu(self.conv7_2(x7))
x8 = self.upconv8(x7)
x8 = torch.cat([x8, x2], 1)
x8 = F.relu(self.conv8_1(x8))
x8 = F.relu(self.conv8_2(x8))
x9 = self.upconv9(x8)
x9 = torch.cat([x9, x1], 1)
x9 = F.relu(self.conv9_1(x9))
x9 = F.relu(self.conv9_2(x9))
x10 = self.conv10(x9)
return x10
# 设置数据集路径和一些超参数
data_dir = 'data'
batch_size = 4
lr = 1e-4
num_epochs = 10
# 加载训练集和测试集
train_dataset = datasets.ImageFolder(data_dir + '/train', transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.ImageFolder(data_dir + '/test', transform=transforms.ToTensor())
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 创建模型和优化器
model = UNet()
optimizer = Adam(model.parameters(), lr=lr)
# 训练模型
for epoch in range(num_epochs):
for i, (images, _) in enumerate(train_loader):
# 前向传播
outputs = model(images)
# 计算损失函数
loss = F.mse_loss(outputs, images)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印损失函数
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 在测试集上测试模型
with torch.no_grad():
total_loss = 0
for images, _ in test_loader:
outputs = model(images)
loss = F.mse_loss(outputs, images)
total_loss += loss.item() * images.size(0)
avg_loss = total_loss / len(test_dataset)
print('Epoch [{}/{}], Test Loss: {:.4f}'.format(epoch+1, num_epochs, avg_loss))
# 保存模型
torch.save(model.state_dict(), 'unet.pth')
```
上述代码中,我们使用了一个简单的 MSE 损失函数来计算模型的损失,这是因为全景图像拼接任务的目标是尽可能地保留原图像的细节和信息,因此我们希望生成的图像尽可能地和原图像相似,而 MSE 损失函数可以很好地衡量两张图片之间的相似度。当然,你也可以根据实际情况选择其他的损失函数,如 L1 损失函数、SSIM 损失函数等。
在训练完成之后,我们可以使用训练好的模型来对新的全景图像进行拼接。具体地,我们将全景图像分割成若干个小图像,然后分别输入到模型中进行预测,最后将预测结果拼接起来即可。下面是一个示例代码:
```python
import cv2
import numpy as np
# 加载模型
model = UNet()
model.load_state_dict(torch.load('unet.pth'))
# 定义输入和输出路径
input_path = 'panorama.jpg'
output_path = 'output.jpg'
# 定义分割参数和步长
height, width, _ = cv2.imread(input_path).shape
patch_size = 256
stride = 128
# 定义输出图像
output = np.zeros((height, width, 3), np.uint8)
# 分割全景图像并进行预测
for y in range(0, height-patch_size+1, stride):
for x in range(0, width-patch_size+1, stride):
patch = cv2.imread(input_path, cv2.IMREAD_COLOR)[y:y+patch_size, x:x+patch_size, :]
patch = cv2.resize(patch, (256, 256))
patch = transforms.ToTensor()(patch)
patch = patch.unsqueeze(0)
with torch.no_grad():
pred = model(patch)
pred = pred.squeeze(0)
pred = pred.permute(1, 2, 0)
pred = pred.detach().numpy()
pred = np.clip(pred, 0, 1)
pred = np.uint8(pred * 255)
output[y:y+patch_size, x:x+patch_size, :] = pred
# 保存输出图像
cv2.imwrite(output_path, output)
```
上述代码中,我们首先加载训练好的模型,然后定义输入和输出路径,以及分割参数和步长。接着,我们定义一个输出图像,用于存储拼接后的结果。然后,我们对全景图像进行分割,每次取出一个小图像,将其缩放为 $256 \times 256$ 的大小,并转换为 PyTorch 张量形式。然后,我们使用训练好的模型对小图像进行预测,得到预测结果。最后,我们将预测结果拼接到输出图像中相应的位置。最终,我们将输出图像保存到指定的路径中。
阅读全文