new_careplans_df1 = new_careplans.groupby('PATIENT')['Id'].apply(lambda x:x.str.cat(sep=',')).reset_index() new_careplans_df1['Id'] = new_careplans_df1['Id'].apply(lambda x: x.split(','))
时间: 2023-08-06 14:02:21 浏览: 80
这段代码的作用是将 `new_careplans` 数据集按照 `PATIENT` 进行分组,然后对于每个分组内的 `Id` 列进行处理,将同一分组内的多个 `Id` 以逗号分隔的形式连接起来,形成一个字符串。最后将得到的字符串转化为列表,并将其赋值给新的 `Id` 列。换句话说,这段代码是将同一患者的多个 `Id` 合并为一个列表,并将其保存在新的数据框 `new_careplans_df1` 中的 `Id` 列中。
相关问题
解释下这段代码 第三方商品 __df1 = __temp_df[__temp_df['show_name'] == '第三方商品'] if not __df1.empty: __df1 = __df1.pivot_table(index=['name', 'show_name'], values=['buy_num'], aggfunc=np.sum).reset_index() else: __df1 = __df1[['name', 'show_name', 'buy_num']] # 非第三方商品 __df2 = __temp_df[__temp_df['show_name'] != '第三方商品'] if not __df2.empty: __df2 = __df2.pivot_table(index=['gt_uuid', 'show_name'] ,values=['buy_num'], aggfunc=np.sum).reset_index() __df2 = pd.merge(left=__df2, right=pd.DataFrame(s_gt_rv, columns=['gt_uuid', 'goods_name']), how='left', on='gt_uuid') __df2 = __df2[['goods_name', 'show_name', 'buy_num']] __df2.rename(columns={'goods_name': 'name'}, inplace=True) else: __df2 = __df2[['name', 'show_name', 'buy_num']] __temp_df = pd.concat([__df1, __df2]) del __df1, __df2 __temp_df.rename(columns={'name': 'goods_name', 'show_name': 'gc_name', 'buy_num': 'num'}, inplace=True) __temp_df.sort_values(by='num', ascending=False, inplace=True) return_data['goods']['goods_list'] = __temp_df.to_dict(orient='records') __temp_df = __temp_df[['gc_name', 'num']] __temp_df = __temp_df.pivot_table(index='gc_name', values='num', aggfunc=np.sum).reset_index() __temp_df.sort_values(by='num', ascending=False, inplace=True) return_data['goods']['gc_list'] = __temp_df.to_dict(orient='records') del __temp_df
这段代码是对一个名为 `__temp_df` 的数据框进行处理,并将处理结果存储在 `return_data` 字典的 `goods` 键下。
首先,根据条件 `__temp_df['show_name'] == '第三方商品'`,筛选出满足条件的行,存储在 `__df1` 中。如果 `__df1` 不为空,则对其进行数据透视操作,按照 `name` 和 `show_name` 分组,计算 `buy_num` 的总和,并重置索引。否则,保留 `__df1` 的 `name`、`show_name` 和 `buy_num` 列。
接着,根据条件 `__temp_df['show_name'] != '第三方商品'`,筛选出满足条件的行,存储在 `__df2` 中。如果 `__df2` 不为空,则对其进行数据透视操作,按照 `gt_uuid` 和 `show_name` 分组,计算 `buy_num` 的总和,并重置索引。然后,将 `__df2` 与一个包含列名为 `['gt_uuid', 'goods_name']` 的 DataFrame 进行左连接,并将结果存储在 `__df2` 中。最后,保留 `__df2` 的 `goods_name`、`show_name` 和 `buy_num` 列,并将列名 `goods_name` 改为 `name`。
接下来,通过合并 `__df1` 和 `__df2` 构成新的数据框 `__temp_df`。之后,删除 `__df1` 和 `__df2` 变量。
然后,对 `__temp_df` 进行列名的重命名,将 `name` 改为 `goods_name`,`show_name` 改为 `gc_name`,`buy_num` 改为 `num`。将 `__temp_df` 按照 `num` 降序排序。
接着,将 `__temp_df` 转换为字典格式,并将结果存储在 `return_data` 字典的 `goods_list` 键下。再次对 `__temp_df` 进行处理,只保留 `gc_name` 和 `num` 两列,并进行数据透视操作,按照 `gc_name` 分组,计算 `num` 的总和,并重置索引。最后,将结果按照 `num` 降序排序。
最后,将处理后的 `__temp_df` 转换为字典格式,并将结果存储在 `return_data` 字典的 `gc_list` 键下。最后,删除 `__temp_df` 变量。
# Labelling the locations with less than or equal to 10 occurences to 'other' locations_less_than_10 = location_stats[location_stats<=10] df1.location = df1.location.apply(lambda x: 'other' if x in locations_less_than_10 else x) len(df1.location.unique())
这段代码的作用是将数据框`df1`中出现次数小于等于10次的地区(即上一个问题中统计出的地区)标记为“其他”(即替换为字符串“other”)。这样可以减少地区的数量,避免地区过于分散,对模型的训练效果造成不良影响。
具体来说,`locations_less_than_10`记录了出现次数小于等于10次的地区,`df1.location.apply(lambda x: 'other' if x in locations_less_than_10 else x)`则是将`df1`数据框中的每个地区进行处理,如果这个地区出现次数小于等于10,则将其替换为“other”,否则保持原来的值不变。最后,`len(df1.location.unique())`输出处理后,不同地区的总数量。
阅读全文