经验模态分解算法matlab代码
时间: 2023-07-31 16:05:49 浏览: 107
EMD_.zip_EMD_EMD matlab_emd plot_经验模态分解
以下是一份简单的经验模态分解(Empirical Mode Decomposition,EMD)的MATLAB代码:
```matlab
function [IMF,residual] = emd(x)
% EMD - Empirical Mode Decomposition
% USAGE: [IMF,residual] = emd(x)
%
% INPUT:
% x - input signal (must be a column vector)
%
% OUTPUT:
% IMF - matrix of intrinsic mode functions (each as a row)
% residual - residual signal
%
% Reference: Huang et al., "The empirical mode decomposition and the
% Hilbert spectrum for nonlinear and non-stationary time series analysis,"
% Proc. R. Soc. Lond. A, Vol. 454, pp. 903-995, 1998.
% Set stopping criterion
epsilon = 0.1;
% Initialize variables
t = 0;
IMF = [];
h = x;
% Loop until stopping criterion is satisfied
while (sum(abs(h)) > epsilon)
t = t + 1;
% Find local extrema
maxs = find((h(2:end-1) > h(1:end-2)) & (h(2:end-1) > h(3:end))) + 1;
mins = find((h(2:end-1) < h(1:end-2)) & (h(2:end-1) < h(3:end))) + 1;
% If there are no extrema, just set the residual to be the input
if isempty(maxs) || isempty(mins)
residual = h;
break;
end
% Make sure maxs and mins start with a max and min respectively
if maxs(1) < mins(1)
maxs = [1; maxs];
end
if mins(1) < maxs(1)
mins = [1; mins];
end
% Make sure maxs and mins end with a max and min respectively
if maxs(end) < mins(end)
mins = [mins; length(h)];
end
if mins(end) < maxs(end)
maxs = [maxs; length(h)];
end
% Make the envelopes
upper = spline(maxs,h(maxs),1:length(h));
lower = spline(mins,h(mins),1:length(h));
% Find the average envelope
mean_env = (upper + lower) / 2;
% Extract the IMF
IMF(t,:) = h - mean_env;
% Update the signal for the next iteration
h = mean_env;
end
% Set the residual
residual = x - sum(IMF);
end
```
这个代码实现了EMD的基本过程,将输入信号分解成一组基本模态函数(IMF),并返回剩余信号(residual)。需要注意的是,EMD是一种迭代算法,停止准则(上述代码中为epsilon)的选择会影响分解结果的质量。
阅读全文