用pytorch写LSTM代码
时间: 2023-06-04 17:03:49 浏览: 189
Python-在PyTorch中使用LSTM进行风速预测
3星 · 编辑精心推荐
好的,我可以回答这个问题。以下是使用PyTorch实现LSTM的基本代码:
```
import torch
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0,c0))
out = self.fc(out[:, -1, :])
return out
```
其中,`input_size`是输入特征的维度,`hidden_size`是LSTM隐藏状态的维度,`num_layers`是LSTM的层数,`output_size`是输出特征的维度。`self.lstm`使用PyTorch内置的LSTM模块,将其输入作为参数传入即可。`self.fc`是一个全连接层,将最后一个时间步的隐藏状态映射到输出维度。`forward`函数中,`h0`和`c0`是LSTM的初始隐藏状态和记忆状态,使用全零矩阵初始化。`out`是LSTM最终的输出,取最后一个时间步的输出作为全连接层的输入,输出预测结果。
阅读全文