如何用pytorch在fashionmnist数据集中使用dropout方法
时间: 2024-03-14 07:43:39 浏览: 86
可以使用PyTorch中的nn.Dropout()函数来实现dropout方法。以下是在FashionMNIST数据集中使用dropout方法的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 定义转换
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.FashionMNIST('./data', train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST('./data', train=False, transform=transform)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.dropout = nn.Dropout(p=0.5) # 定义dropout层,丢弃概率为0.5
def forward(self, x):
x = x.view(-1, 784)
x = self.dropout(torch.relu(self.fc1(x)))
x = self.dropout(torch.relu(self.fc2(x)))
x = self.fc3(x)
return x
model = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[Epoch %d] loss: %.3f' % (epoch+1, running_loss/len(train_loader)))
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
```
在上述代码中,我们定义了一个名为`Net`的类来表示我们的神经网络模型。在`Net`的构造函数中,我们定义了三个全连接层和一个dropout层,丢弃概率为0.5。在`forward`函数中,我们首先将输入数据展开为一维向量,然后通过全连接层和dropout层进行前向传播。
在训练过程中,我们使用交叉熵损失函数和随机梯度下降优化器来训练模型。在测试过程中,我们使用准确率作为评价指标来评估模型的性能。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)