写一个opencv dnn handpose的c++代码

时间: 2023-09-18 11:05:52 浏览: 96
### 回答1: 我可以提供一个示例来帮助您实现OpenCV DNN handpose的C代码:#include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp>using namespace cv; using namespace cv::dnn;int main(int argc, char** argv) { // 读取模型文件 String modelTxt = "handpose.prototxt"; String modelBin = "handpose.caffemodel"; Net net = readNetFromCaffe(modelTxt, modelBin); // 读取图像 Mat image = imread("hand.jpg"); // 设置图像大小 Mat inputBlob = blobFromImage(image, 1.0f, Size(224, 224), Scalar(), false, false); // 输入网络 net.setInput(inputBlob); // 运行网络 Mat detection = net.forward(); // 解析结果 Mat points(21, 2, CV_32F, detection.ptr<float>(0)); // 在图像上绘制结果 for (int i = 0; i < points.rows; i++) { int x = cvRound(points.at<float>(i, 0)); int y = cvRound(points.at<float>(i, 1)); circle(image, Point(x, y), 3, Scalar(0, 0, 255), 2); } // 显示结果 imshow("Result", image); waitKey(); return 0; } ### 回答2: 下面是一个使用OpenCV DNN库实现手势识别的C++代码示例: ```c++ #include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> using namespace cv; using namespace cv::dnn; int main() { // 加载预训练模型 String modelFile = "path/to/pose_deploy.prototxt"; String weightsFile = "path/to/pose_iter_102000.caffemodel"; Net net = readNetFromCaffe(modelFile, weightsFile); // 读取输入图像 Mat image = imread("path/to/input_image.jpg"); if (image.empty()) { printf("Failed to read image file.\n"); return -1; } // 输入图像预处理 Mat inputBlob = blobFromImage(image, 1.0, Size(368, 368), Scalar(127.5, 127.5, 127.5), false, false); // 设置输入Blob net.setInput(inputBlob); // 进行前向推理 Mat result = net.forward(); // 解析输出Blob Mat handPose = result.reshape(1, Net::`getSize(depht)); // 在图像上绘制手部关键点 for (int i = 0; i < handPose.rows; i++) { Point2f point(handPose.at<float>(i, 0) * image.cols, handPose.at<float>(i, 1) * image.rows); circle(image, point, 5, Scalar(0, 255, 0), -1); } // 显示结果图像 imshow("Hand Pose", image); waitKey(0); return 0; } ``` 请注意,上述代码仅为示例,具体路径和参数需要根据实际情况进行修改。此代码假设目标图像已经存在,并使用在Caffe模型训练中使用的标准预处理步骤进行输入图像的处理。 希望以上代码对您有帮助! ### 回答3: 以下是一个简单的使用OpenCV DNN(深度神经网络)模块进行手势识别的C++代码示例。请注意,以下代码仅提供基本结构和示例,具体实现还需要根据具体情况进行调整和完善。 ```cpp #include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> using namespace cv; using namespace cv::dnn; int main() { // 加载预训练的模型文件 Net net = readNet("path/to/handpose_model.pb"); // 加载图像 Mat image = imread("path/to/image.png"); // 将图像转换为需要的大小和格式 Mat inputBlob = blobFromImage(image, 1.0, Size(368, 368), Scalar(127.5, 127.5, 127.5), true, false); // 设置网络的输入 net.setInput(inputBlob); // 运行前向传播 Mat output = net.forward(); // 处理输出结果 // 假设输出结果为手的关键点坐标 // 可根据具体情况进行后续处理,如绘制关键点等 return 0; } ``` 在使用这段代码之前,请确保已安装并正确配置OpenCV和OpenCV DNN模块,并将正确的模型文件路径和图像路径替换为你自己的路径。 注意,此代码仅包含了模型的加载和前向传播部分,你还可以根据需求添加更多的后续处理,以实现更全面和准确的手势识别功能。

相关推荐

最新推荐

recommend-type

opencv3/C++ 使用Tracker实现简单目标跟踪

OpenCV3/C++ 使用Tracker实现简单目标跟踪 OpenCV3 提供了多种 Tracker 算法来实现目标跟踪,包括 MIL、OLB、MedianFlow、TLD、KCF 等。这些算法可以根据不同的场景选择适合的跟踪器来实现目标跟踪。 MIL Tracker...
recommend-type

opencv3/C++图像边缘提取方式

OpenCV 是一个计算机视觉库,提供了许多图像处理算法,今天我们将讨论 OpenCV 3 中的图像边缘提取方式。 图像边缘提取 图像边缘提取是图像处理技术中的一种重要技术,它可以从图像中提取边缘信息,边缘信息可以...
recommend-type

opencv3/C++实现视频读取、视频写入

本文将详细介绍如何使用OpenCV3和C++实现这两个操作,并提供相关的代码示例。 首先,我们来看视频读取的过程。在OpenCV中,视频读取主要通过`VideoCapture`类来完成。`VideoCapture`类提供了一个方便的方法`open()`...
recommend-type

opencv3/C++ 将图片转换为视频的实例

OpenCV3 是一个功能强大且广泛使用的计算机视觉库,它提供了大量的图像和视频处理功能。在本文中,我们将介绍如何使用 OpenCV3 和 C++ 将一系列图片转换为视频。 知识点1:OpenCV3 安装配置 要使用 OpenCV3,首先...
recommend-type

opencv3/C++ 实现SURF特征检测

OpenCV3 中的 SURF 类提供了一个静态成员函数 create(),用于创建 SURF 检测器,该函数的参数包括: * `hessianThreshold`: SURF 中使用的 Hessian 关键点检测器的阈值,默认为 100。 * `nOctaves`:关键点检测器...
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。