实例级对比学习的pytorch代码案例
时间: 2023-10-07 17:11:27 浏览: 619
实例级对比学习(Instance-level Contrastive Learning)是一种自监督学习方法,可以用于无监督学习和半监督学习。下面是一个基于PyTorch的实例级对比学习代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义模型
class Encoder(nn.Module):
def __init__(self, z_dim=128):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(256, z_dim)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
x = F.relu(self.bn4(self.conv4(x)))
x = self.avgpool(x)
x = x.view(x.size(0), -1)
z = self.fc(x) # 输出z
return z
# 定义对比学习模型
class ContrastiveModel(nn.Module):
def __init__(self, encoder):
super(ContrastiveModel, self).__init__()
self.encoder = encoder
def forward(self, x1, x2):
z1 = self.encoder(x1)
z2 = self.encoder(x2)
return z1, z2
# 构建数据集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
model = ContrastiveModel(Encoder())
num_epochs = 10
for epoch in range(num_epochs):
for i, (x1, x2) in enumerate(train_loader):
z1, z2 = model(x1, x2)
loss = criterion(z1, z2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
```
上述代码中,定义了一个Encoder模型用于提取图像特征,然后构建了一个ContrastiveModel模型用于对比学习。在训练过程中,我们定义了一个交叉熵损失函数,并使用Adam优化器进行优化。在每个epoch中,我们遍历数据集并迭代模型。最后输出训练过程中的损失值。
阅读全文