完整的pytorch 实现PATnet模型代码及训练代码
时间: 2024-03-26 09:39:50 浏览: 118
以下是PATNet模型的PyTorch实现代码及训练代码,其中使用了ImageNet数据集进行训练:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets, models
# 定义PATNet模型
class PATNet(nn.Module):
def __init__(self, num_classes=1000):
super(PATNet, self).__init__()
self.resnet = models.resnet50(pretrained=True)
self.resnet.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.resnet(x)
return x
# 数据预处理
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载ImageNet数据集
train_data = datasets.ImageNet('path/to/train', split='train', transform=train_transforms)
val_data = datasets.ImageNet('path/to/val', split='val', transform=val_transforms)
# 定义训练参数
batch_size = 32
num_epochs = 10
learning_rate = 0.001
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
model = PATNet(num_classes=1000)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
train_acc = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss = train_loss / len(train_loader.dataset)
train_acc = train_acc.double() / len(train_loader.dataset)
model.eval()
val_loss = 0.0
val_acc = 0.0
for inputs, labels in val_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
val_acc += torch.sum(preds == labels.data)
val_loss = val_loss / len(val_loader.dataset)
val_acc = val_acc.double() / len(val_loader.dataset)
print('Epoch: {} || Train Loss: {:.4f} || Train Acc: {:.4f} || Val Loss: {:.4f} || Val Acc: {:.4f}'.format(
epoch+1, train_loss, train_acc, val_loss, val_acc))
```
在模型训练完成后,您可以使用保存的模型进行预测和推理。
阅读全文