java实现B+树数据结构 ,构造100条数据,读入内存,把地址加到B+树的叶子结点中 ,构造测试用例

时间: 2024-01-06 11:06:47 浏览: 32
好的,针对您的需求,我可以给您提供一些Java实现B+树的思路和代码示例。希望对您有所帮助! 1. Java实现B+树数据结构 B+树的Java实现需要定义节点类和B+树类。节点类包括节点类型(内部节点或叶子节点)、键数组、子节点指针数组、父节点指针、下一个叶子节点指针等属性。B+树类包括根节点指针、阶数、叶子节点链表头指针等属性,以及插入、查找、删除等操作方法。 以下是B+树节点类的Java代码示例: ``` public class BPlusNode<K extends Comparable<K>, V> { // 节点类型:0-内部节点,1-叶子节点 private int type; // 键数组 private K[] keys; // 子节点指针数组 private BPlusNode<K, V>[] children; // 父节点指针 private BPlusNode<K, V> parent; // 下一个叶子节点指针 private BPlusNode<K, V> next; // 数据地址数组,只有叶子节点才有 private List<V> values; // 构造函数 public BPlusNode(int type, int order) { this.type = type; this.keys = (K[]) new Comparable[order + 1]; this.children = (BPlusNode<K, V>[]) new BPlusNode[order + 2]; this.values = new ArrayList<V>(); } // 插入键值对 public void insert(K key, V value) { // 找到插入位置 int pos = 0; while (pos < values.size() && key.compareTo(keys[pos]) > 0) { pos++; } // 插入数据地址 values.add(pos, value); // 插入键 System.arraycopy(keys, pos, keys, pos + 1, values.size() - pos - 1); keys[pos] = key; } // 删除键值对 public void delete(K key) { // 找到删除位置 int pos = 0; while (pos < values.size() && key.compareTo(keys[pos]) > 0) { pos++; } // 删除数据地址 values.remove(pos); // 删除键 System.arraycopy(keys, pos + 1, keys, pos, values.size() - pos); keys[values.size()] = null; } } ``` 以下是B+树类的Java代码示例: ``` public class BPlusTree<K extends Comparable<K>, V> { // 根节点指针 private BPlusNode<K, V> root; // 阶数 private int order; // 叶子节点链表头指针 private BPlusNode<K, V> head; // 构造函数 public BPlusTree(int order) { this.root = new BPlusNode<K, V>(1, order); this.order = order; this.head = root; } // 插入键值对 public void insert(K key, V value) { // 找到插入位置 BPlusNode<K, V> node = findLeafNode(key); // 插入数据地址 node.insert(key, value); // 判断节点是否需要分裂 if (node.values.size() > order) { splitNode(node); } } // 查找键值对 public V search(K key) { // 找到叶子节点 BPlusNode<K, V> node = findLeafNode(key); // 查找数据地址 int pos = 0; while (pos < node.values.size() && key.compareTo(node.keys[pos]) > 0) { pos++; } if (pos < node.values.size() && key.compareTo(node.keys[pos]) == 0) { return node.values.get(pos); } else { return null; } } // 删除键值对 public void delete(K key) { // 找到叶子节点 BPlusNode<K, V> node = findLeafNode(key); // 删除数据地址 node.delete(key); // 判断节点是否需要合并 if (node.parent != null && node.values.size() < (order + 1) / 2) { mergeNode(node); } // 判断根节点是否需要缩小 if (root.children[0] == null) { root = node; } } // 找到叶子节点 private BPlusNode<K, V> findLeafNode(K key) { BPlusNode<K, V> node = root; while (node.type == 0) { int pos = 0; while (pos < node.keys.length && key.compareTo(node.keys[pos]) >= 0) { pos++; } node = node.children[pos]; } return node; } // 分裂节点 private void splitNode(BPlusNode<K, V> node) { // 分裂后,左节点包含的数据地址数目为(order+1)/2,右节点包含的数据地址数目为order+1-(order+1)/2 int mid = (order + 1) / 2; BPlusNode<K, V> left = new BPlusNode<K, V>(node.type, order); BPlusNode<K, V> right = new BPlusNode<K, V>(node.type, order); if (node.parent == null) { // 分裂根节点 BPlusNode<K, V> parent = new BPlusNode<K, V>(0, order); parent.children[0] = left; parent.children[1] = right; parent.keys[0] = node.keys[mid - 1]; left.parent = parent; right.parent = parent; root = parent; } else { // 分裂内部节点或叶子节点 BPlusNode<K, V> parent = node.parent; int pos = 0; while (pos < parent.children.length && parent.children[pos] != node) { pos++; } parent.insert(node.keys[mid - 1], null); System.arraycopy(node.children, 0, left.children, 0, mid); System.arraycopy(node.children, mid, right.children, 0, order + 1 - mid); System.arraycopy(node.keys, 0, left.keys, 0, mid - 1); System.arraycopy(node.keys, mid, right.keys, 0, order - mid); left.parent = parent; right.parent = parent; parent.children[pos] = left; parent.children[pos + 1] = right; if (parent.values.size() > order) { splitNode(parent); } } if (node.type == 1) { // 更新叶子节点链表 left.next = right; right.next = node.next; node.next = null; if (node == head) { head = left; } } } // 合并节点 private void mergeNode(BPlusNode<K, V> node) { // 合并后,父节点中的键和子节点指针数目减1 BPlusNode<K, V> parent = node.parent; int pos = 0; while (pos < parent.children.length && parent.children[pos] != node) { pos++; } if (pos == 0) { // 合并左节点和右节点 BPlusNode<K, V> right = parent.children[pos + 1]; node.keys[node.values.size()] = parent.keys[0]; System.arraycopy(right.children, 0, node.children, node.values.size(), right.values.size()); System.arraycopy(right.keys, 0, node.keys, node.values.size() + 1, right.values.size()); node.values.addAll(right.values); node.next = right.next; if (right.next != null) { right.next.parent = node; } parent.delete(parent.keys[0]); parent.children[pos + 1] = null; } else { // 合并左节点和右节点 BPlusNode<K, V> left = parent.children[pos - 1]; left.keys[left.values.size()] = parent.keys[pos - 1]; System.arraycopy(node.children, 0, left.children, left.values.size(), node.values.size()); System.arraycopy(node.keys, 0, left.keys, left.values.size() + 1, node.values.size()); left.values.addAll(node.values); left.next = node.next; if (node.next != null) { node.next.parent = left; } parent.delete(parent.keys[pos - 1]); parent.children[pos] = null; } if (parent.parent != null && parent.values.size() < (order + 1) / 2) { mergeNode(parent); } } } ``` 2. 构造100条数据,并加入B+树 构造100条数据很简单,您可以随机生成100个整数作为键,然后将它们与一些数据地址关联起来。接下来,您需要将这些数据插入到B+树中。插入操作需要从根节点开始遍历,找到合适的叶子节点,然后将键和数据地址插入到叶子节点中。如果插入后导致节点超过了容量限制,就需要进行分裂操作。具体实现可以参考B+树的算法。 以下是Java代码示例: ``` // 构造100条数据 Map<Integer, String> map = new HashMap<>(); Random random = new Random(); for (int i = 0; i < 100; i++) { int key = random.nextInt(1000); String value = "data-" + i; map.put(key, value); } // 加入B+树 BPlusTree<Integer, String> tree = new BPlusTree<>(4); for (Map.Entry<Integer, String> entry : map.entrySet()) { int key = entry.getKey(); String value = entry.getValue(); tree.insert(key, value); } ``` 3. 构造测试用例 构造测试用例的目的是验证B+树的正确性和性能。您可以设计一些测试用例,例如: - 测试B+树的插入和查找操作,验证数据是否能够正确地插入和查找。 - 测试B+树的删除操作,验证数据是否能够正确地删除,并且删除后B+树是否能够保持平衡。 - 测试B+树的性能,包括插入、查找、删除操作的时间和空间复杂度,以及B+树的存储效率和查询效率。 以下是Java代码示例: ``` // 测试插入和查找操作 for (Map.Entry<Integer, String> entry : map.entrySet()) { int key = entry.getKey(); String value = entry.getValue(); String result = tree.search(key); assert result.equals(value); } // 测试删除操作 for (Map.Entry<Integer, String> entry : map.entrySet()) { int key = entry.getKey(); tree.delete(key); String result = tree.search(key); assert result == null; } // 测试性能 long startTime = System.currentTimeMillis(); for (Map.Entry<Integer, String> entry : map.entrySet()) { int key = entry.getKey(); String value = entry.getValue(); tree.insert(key, value); } long endTime = System.currentTimeMillis(); System.out.println("插入100条数据用时:" + (endTime - startTime) + "ms"); startTime = System.currentTimeMillis(); for (Map.Entry<Integer, String> entry : map.entrySet()) { int key = entry.getKey(); String result = tree.search(key); } endTime = System.currentTimeMillis(); System.out.println("查找100条数据用时:" + (endTime - startTime) + "ms"); startTime = System.currentTimeMillis(); for (Map.Entry<Integer, String> entry : map.entrySet()) { int key = entry.getKey(); tree.delete(key); } endTime = System.currentTimeMillis(); System.out.println("删除100条数据用时:" + (endTime - startTime) + "ms"); ``` 以上是B+树的Java实现思路和代码示例,希望对您有所帮助!

相关推荐

最新推荐

recommend-type

C语言从txt文件中逐行读入数据存到数组中的实现方法

在C语言中,从文本文件(如`.txt`文件)中读取数据并存储到数组是一种常见的操作。这里我们将详细探讨如何实现这个过程,特别是在处理包含二维数据的文件时。 首先,我们需要打开文件并检查是否成功打开。使用`...
recommend-type

C++从文本文件读取数据到vector中的方法

在C++编程中,有时我们需要从文本文件读取数据并将其存储到容器中,例如`std::vector`。`std::vector`是一个动态大小的数组,它可以方便地扩展以适应不断变化的数据需求。本篇文章将详细讲解如何使用C++从文本文件...
recommend-type

数据结构综合课设设计一个哈夫曼的编/译码系统.docx

利用已建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。 D:译码(Decoding)。利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果...
recommend-type

利用Python+matplotlib对泰坦尼克号进行数据分析

主要分析有数据接:https://pan.baidu.com/s/1jn88GiOr7uWA8BDQocFXxg 密码: s0e0不同舱位等级中幸存者和遇难者的乘客比例不同性别的幸存比例幸存和遇难...首先做准备(导入库,读入数据集) import matplotlib.pypl
recommend-type

数据结构综合课设停车场问题.docx

设停车场内只有一个可停放n辆汽车的狭长通道,且只有一个大门可供汽车进出。汽车在停车场内按车辆到达时间的先后顺序,依次由北向南排列(大门在最南端,最先到达的第一辆车停放...栈以顺序结构实现,队列以链表实现。
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。