基于51单片机的温度检测系统设计

时间: 2023-07-26 18:15:19 浏览: 78
以下是一个基于51单片机的温度检测系统的设计方案: 硬件设计: 1. AT89S52单片机 2. DS18B20数字温度传感器 3. 16x2 LCD液晶显示屏 4. 4.7K欧姆电阻 5. 9V电源 6. 杜邦线和面包板 软件设计: 1. Keil C51编译器 2. Proteus仿真软件 基本思路: 1. 将DS18B20数字温度传感器连接到单片机上,并进行初始化设置。 2. 单片机启动后,通过读取DS18B20传感器的数据获取当前环境温度。 3. 将温度数据显示在LCD液晶显示屏上。 4. 通过串口通信将温度数据发送到上位机,实现远程监控。 5. 使用电路连接线和电阻,将整个系统连接到9V电源模块上,以保证系统正常运行。 6. 使用Keil C51编译器编写程序,实现系统逻辑和功能。 7. 使用Proteus仿真软件进行系统仿真和测试。 以下是一个基于51单片机的温度检测系统的程序代码: ```c #include <reg52.h> #include <stdio.h> #include <string.h> sbit DQ = P3^7; // DS18B20数据线连接到P3.7 sbit RS = P2^0; // LCD液晶显示屏RS引脚连接到P2.0 sbit RW = P2^1; // LCD液晶显示屏RW引脚连接到P2.1 sbit EN = P2^2; // LCD液晶显示屏EN引脚连接到P2.2 void Delay1ms(unsigned int i) // 延时函数 { unsigned int j; while(i--) { for(j=0;j<120;j++); } } void LCD_Write_Cmd(unsigned char cmd) // 写指令函数 { RW = 0; RS = 0; P0 = cmd; EN = 1; Delay1ms(5); EN = 0; } void LCD_Write_Data(unsigned char dat) // 写数据函数 { RW = 0; RS = 1; P0 = dat; EN = 1; Delay1ms(5); EN = 0; } void LCD_Init() // LCD初始化函数 { LCD_Write_Cmd(0x38); LCD_Write_Cmd(0x0c); LCD_Write_Cmd(0x06); LCD_Write_Cmd(0x01); } void LCD_Write_String(unsigned char x, unsigned char y, unsigned char *s) // 在LCD上显示字符串函数 { unsigned char i; if(x<16) { if(y) x |= 0x40; x |= 0x80; LCD_Write_Cmd(x); } i = 0; while(s[i]) { LCD_Write_Data(s[i]); i++; } } unsigned char DS18B20_Reset() // DS18B20复位函数 { unsigned char i; DQ = 1; Delay1ms(1); DQ = 0; Delay1ms(480); DQ = 1; Delay1ms(60); i = DQ; Delay1ms(420); return i; } void DS18B20_Write_Byte(unsigned char dat) // DS18B20写字节函数 { unsigned char i; for(i=0;i<8;i++) { DQ = 0; DQ = dat & 0x01; Delay1ms(5); DQ = 1; dat >>= 1; } } unsigned char DS18B20_Read_Byte() // DS18B20读字节函数 { unsigned char i, dat = 0; for(i=0;i<8;i++) { DQ = 0; Delay1ms(5); DQ = 1; dat >>= 1; if(DQ) dat |= 0x80; Delay1ms(5); } return dat; } void DS18B20_Start() // DS18B20开始转换函数 { DS18B20_Reset(); DS18B20_Write_Byte(0xcc); DS18B20_Write_Byte(0x44); } float DS18B20_Read_Temp() // DS18B20读温度函数 { unsigned char temp_l, temp_h; float temp; DS18B20_Reset(); DS18B20_Write_Byte(0xcc); DS18B20_Write_Byte(0xbe); temp_l = DS18B20_Read_Byte(); temp_h = DS18B20_Read_Byte(); temp = temp_h; temp *= 256; temp += temp_l; temp /= 16; return temp; } void main() { float temp; unsigned char str[16]; LCD_Init(); while(1) { DS18B20_Start(); temp = DS18B20_Read_Temp(); sprintf(str, "Temp:%.2fC", temp); LCD_Write_String(0, 0, str); Delay1ms(1000); } } ``` 该代码中使用了DS18B20数字温度传感器和LCD液晶显示屏。需要注意的是,由于51单片机没有内置的ADC模块,因此我们选择了DS18B20数字温度传感器,需要使用DS18B20相关函数进行温度值的读取。同时,LCD液晶显示屏的初始化也需要在程序中进行。

相关推荐

最新推荐

recommend-type

基于51单片机空气质量检测仪设计.doc

本文研究的室内便携式智能空气品质监测仪是以室内空气中有毒有害气体的监测监控为背景,是以STC工公司的一款8位超低功耗单片机STC90C51为控制核心,能够实现对室内温度,湿度,VOC气体的实时采集处理、显示、报警等...
recommend-type

基于51单片机的温度测量系统

"基于51单片机的温度测量系统" 本文介绍了基于AT89C2051单片机的温度测量系统的设计,涉及硬件和软件两个方面。该系统使用DS18B20温度传感器来采集温度数据,并通过AT89C2051单片机对温度进行控制和显示。 温度...
recommend-type

基于51单片机为核心的智能压力传感器设计

"基于51单片机为核心的智能压力传感器设计" 本文将对基于51单片机的智能压力传感器设计进行详细的介绍,包括智能压力传感器的特点、设计方法、软件设计等方面。 智能压力传感器是指能感受压力,并将其转换成可用...
recommend-type

基于C51单片机的温度检测设计

本系统是以AT89C51单片机核心,采用A/D转换器(ADC0804)将模拟信号转换为数字信号,采用LM35D电压型温度传感器采集室温,经OP07信号放大作用,实现温度实时显示、高温、低温报警,经实验调试,用该方法对0—100℃...
recommend-type

基于DS18B20测温的单片机温度控制系统

基于DS18B20测温的单片机温度控制系统 温度控制系统是工业控制中非常重要的部分,对典型的温度控制系统进行研究具有很广泛的意义。本文介绍了一种基于DS18B20测温的单片机温度控制系统,系统采用AT89S52单片机作为...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。