将下列numpy代码转化为纯pytorch代码: w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1]

时间: 2023-02-09 18:08:47 浏览: 111
import torch w = torch.max(torch.zeros_like(xx2 - xx1 + 1), xx2 - xx1 + 1) h = torch.max(torch.zeros_like(yy2 - yy1 + 1), yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] - areas[order[1:]] + inter) inds = (ovr <= thresh).nonzero().squeeze() order = order[inds + 1]
相关问题

首先,基于图像和数值数据作为共同输入,自己创建一个CNN回归模型,其中图像和数值数据在全连接层进行拼接;然后,对CNN模型进行训练;最后,实现Grad-Cam可视化,计算最后一个卷积层中所有特征图对预测结果的权重,以热力图的形式把特征图映射到原始图片中,显示图像中用于预测的重要区域。PyTorch完整代码实现

以下是基于图像和数值数据作为共同输入的CNN回归模型的PyTorch代码实现: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() # Convolutional layers for image data self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) # Fully connected layers for numeric data and concatenated features self.fc1 = nn.Linear(16 * 5 * 5 + 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 1) def forward(self, x_img, x_num): x_img = self.pool(torch.relu(self.conv1(x_img))) x_img = self.pool(torch.relu(self.conv2(x_img))) x_img = x_img.view(-1, 16 * 5 * 5) x = torch.cat((x_img, x_num), dim=1) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # Define the transform for image data transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Create DataLoader for the dataset dataset = MyDataset(image_dir, labels_file, transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2) # Initialize the model and optimizer net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # Train the model for epoch in range(10): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(dataloader, 0): # Get the inputs inputs_img, inputs_num, labels = data # Zero the parameter gradients optimizer.zero_grad() # Forward + backward + optimize outputs = net(inputs_img, inputs_num) loss = criterion(outputs, labels) loss.backward() optimizer.step() # Print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ``` 在这个模型中,我们首先定义了一个Net类,它包含了图像数据和数值数据的处理过程。对于图像数据,我们使用了两个卷积层和一个最大池化层;对于数值数据,我们使用了三个全连接层。在forward函数中,我们将图像数据和数值数据拼接在一起,然后通过全连接层得到最终的回归结果。 接下来,我们定义了一个transform对象来处理图像数据,将RGB图像转换为PyTorch需要的格式,并进行了标准化处理。然后,我们创建了一个DataLoader对象来加载数据集,并将其分为小批次进行训练。 最后,我们初始化了模型、损失函数和优化器,然后循环训练模型。在每个epoch中,我们遍历整个数据集,并使用SGD优化器进行反向传播和权重更新。在每个小批次中,我们计算损失,并每隔2000个小批次打印一次平均损失。 接下来,我们实现Grad-Cam可视化,计算最后一个卷积层中所有特征图对预测结果的权重,以热力图的形式把特征图映射到原始图片中,显示图像中用于预测的重要区域。以下是实现Grad-Cam可视化的代码: ```python import cv2 import numpy as np import torch.nn.functional as F # Define a function to get the Grad-CAM heatmap for a given input image and model def get_gradcam_heatmap(img, model, layer): # Convert the image to a PyTorch tensor img_tensor = transform(img).unsqueeze(0) # Get the model's prediction for the input image outputs = model(img_tensor, ...) _, predicted = torch.max(outputs.data, 1) # Get the feature maps from the last convolutional layer features = model.conv2(img_tensor) features = F.relu(features) # Get the gradients of the predicted class with respect to the feature maps one_hot = torch.zeros((1, outputs.size()[-1]), dtype=torch.float32) one_hot[0][predicted] = 1 one_hot.requires_grad = True one_hot.backward(torch.ones_like(one_hot)) grads = model.fc2.weight.grad pooled_grads = torch.mean(grads, dim=[0, 2, 3]) # Multiply each feature map by its corresponding gradient and take the sum for i in range(features.size()[1]): features[:, i, :, :] *= pooled_grads[i] heatmap = torch.mean(features, dim=1).squeeze() heatmap = np.maximum(heatmap.detach().numpy(), 0) # Normalize the heatmap heatmap /= np.max(heatmap) # Resize the heatmap to match the original image size heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0])) heatmap = np.uint8(255 * heatmap) # Apply colormap to the heatmap and overlay it on the original image colormap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) overlaid = cv2.addWeighted(img, 0.7, colormap, 0.3, 0) return overlaid # Get an example image from the dataset img, _, _ = dataset[0] # Get the Grad-CAM heatmap for the example image heatmap = get_gradcam_heatmap(img, net, net.conv2) # Display the original image and the heatmap cv2.imshow('Original', img) cv2.imshow('Heatmap', heatmap) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在这个代码中,我们定义了一个get_gradcam_heatmap函数,它接受一个输入图像、一个模型和一个卷积层作为参数,并返回一个Grad-CAM热力图。首先,我们将输入图像转换为PyTorch张量,并获取模型的预测结果。然后,我们获取最后一个卷积层的特征图,并计算预测类别对特征图的梯度。接下来,我们将每个特征图乘以其对应的梯度,并求和得到一个特征图权重矩阵。我们使用这个权重矩阵对特征图进行加权平均,并对结果进行非线性处理和归一化。最后,我们将热力图重新调整大小以匹配原始图像的大小,并将其与原始图像叠加在一起。 在主函数中,我们首先从数据集中获取一个样本图像,然后调用get_gradcam_heatmap函数获取其Grad-CAM热力图,并显示原始图像和热力图。

用pytorch实现CNN和领域自适应MMD进行样本迁移

好的,这是一个比较专业的问题,我会尽力回答。首先,CNN是卷积神经网络的缩写,它是一种深度学习模型,常用于图像识别和分类任务。PyTorch是一个基于Python的深度学习框架,可以方便地搭建和训练CNN模型。 领域自适应MMD(Domain Adaptive Maximum Mean Discrepancy)是一种用于解决样本迁移问题的方法。它可以帮助解决不同领域之间的数据分布差异问题,从而提高模型的泛化性能。 下面是一个简单的用PyTorch实现CNN和领域自适应MMD进行样本迁移的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.autograd import Variable from sklearn.metrics.pairwise import rbf_kernel # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 64, 5) self.fc1 = nn.Linear(64 * 5 * 5, 1000) self.fc2 = nn.Linear(1000, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 64 * 5 * 5) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x # 定义领域自适应MMD损失函数 def mmd_loss(source, target, kernel_mul=2.0, kernel_num=5): batch_size = source.size()[0] total = 0 for i in range(batch_size): s1, s2 = source[i:i+1], source[i+1:batch_size] t1, t2 = target[i:i+1], target[i+1:batch_size] ss = torch.cat([s1, s2], dim=0) tt = torch.cat([t1, t2], dim=0) s_kernel = rbf_kernel(ss, ss, gamma=kernel_mul, n_components=kernel_num) t_kernel = rbf_kernel(tt, tt, gamma=kernel_mul, n_components=kernel_num) st_kernel = rbf_kernel(ss, tt, gamma=kernel_mul, n_components=kernel_num) total += torch.mean(s_kernel) + torch.mean(t_kernel) - 2 * torch.mean(st_kernel) return total # 训练CNN模型并进行领域自适应MMD迁移 def train(model, source_data, target_data, num_epochs=10, lr=0.001): optimizer = optim.Adam(model.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() for epoch in range(num_epochs): model.train() running_loss = 0.0 for i, data in enumerate(source_data, 0): inputs, labels = data inputs, labels = Variable(inputs), Variable(labels) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() loss.backward() # 计算领域自适应MMD损失 source_features = model(inputs) target_features = model(next(iter(target_data))[0]) mmd_loss_value = mmd_loss(source_features, target_features) mmd_loss_value.backward() optimizer.step() # 每个epoch结束后输出loss print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(source_data))) print('Finished Training') ``` 这段代码定义了一个CNN模型,以及用于计算领域自适应MMD损失的函数和训练函数。在训练函数中,我们使用PyTorch的自动求导功能计算CNN模型的交叉熵损失和领域自适应MMD损失,并使用Adam优化器进行模型参数的更新。
阅读全文

相关推荐

最新推荐

recommend-type

Python Numpy:找到list中的np.nan值方法

在实际应用中,你可能还需要使用`np.nan_to_num()`将`np.nan`转换为其他数值,或者使用`np.isnan()`与`~`(非操作符)结合,通过布尔索引来直接从数组中删除`np.nan`值。例如: ```python # 从数组中移除np.nan值 ...
recommend-type

numpy:np.newaxis 实现将行向量转换成列向量

例如,如果你有数组`x = np.array([0, 1, 2])`,这是一个形状为`(3,)`的行向量,你可以使用`x[:, np.newaxis]`或者等价的`x[:, None]`将其转换为形状为`(3, 1)`的列向量: ```python x = np.array([0, 1, 2]) x_...
recommend-type

python numpy库np.percentile用法说明

`numpy.percentile` 是 Python 的科学计算库 numpy 中的一个功能强大的函数,用于计算数组数据的分位数。分位数是一种统计学上的概念,它将数据集分为相等的几部分,例如,第一四分位数(Q1)将数据分为前25%和后75%...
recommend-type

友价免签约支付接口插件最新版

友价免签约支付接口插件最新版
recommend-type

基于java的微信小程序跳蚤市场设计与实现答辩PPT.pptx

基于java的微信小程序跳蚤市场设计与实现答辩PPT.pptx
recommend-type

探索AVL树算法:以Faculdade Senac Porto Alegre实践为例

资源摘要信息:"ALG3-TrabalhoArvore:研究 Faculdade Senac Porto Alegre 的算法 3" 在计算机科学中,树形数据结构是经常被使用的一种复杂结构,其中AVL树是一种特殊的自平衡二叉搜索树,它是由苏联数学家和工程师Georgy Adelson-Velsky和Evgenii Landis于1962年首次提出。AVL树的名称就是以这两位科学家的姓氏首字母命名的。这种树结构在插入和删除操作时会维持其平衡,以确保树的高度最小化,从而在最坏的情况下保持对数的时间复杂度进行查找、插入和删除操作。 AVL树的特点: - AVL树是一棵二叉搜索树(BST)。 - 在AVL树中,任何节点的两个子树的高度差不能超过1,这被称为平衡因子(Balance Factor)。 - 平衡因子可以是-1、0或1,分别对应于左子树比右子树高、两者相等或右子树比左子树高。 - 如果任何节点的平衡因子不是-1、0或1,那么该树通过旋转操作进行调整以恢复平衡。 在实现AVL树时,开发者通常需要执行以下操作: - 插入节点:在树中添加一个新节点。 - 删除节点:从树中移除一个节点。 - 旋转操作:用于在插入或删除节点后调整树的平衡,包括单旋转(左旋和右旋)和双旋转(左右旋和右左旋)。 - 查找操作:在树中查找一个节点。 对于算法和数据结构的研究,理解AVL树是基础中的基础。它不仅适用于算法理论的学习,还广泛应用于数据库系统、文件系统以及任何需要快速查找和更新元素的系统中。掌握AVL树的实现对于提升软件效率、优化资源使用和降低算法的时间复杂度至关重要。 在本资源中,我们还需要关注"Java"这一标签。Java是一种广泛使用的面向对象的编程语言,它对数据结构的实现提供了良好的支持。利用Java语言实现AVL树,可以采用面向对象的方式来设计节点类和树类,实现节点插入、删除、旋转及树平衡等操作。Java代码具有很好的可读性和可维护性,因此是实现复杂数据结构的合适工具。 在实际应用中,Java程序员通常会使用Java集合框架中的TreeMap和TreeSet类,这两个类内部实现了红黑树(一种自平衡二叉搜索树),而不是AVL树。尽管如此,了解AVL树的原理对于理解这些高级数据结构的实现原理和使用场景是非常有帮助的。 最后,提及的"ALG3-TrabalhoArvore-master"是一个压缩包子文件的名称列表,暗示了该资源是一个关于AVL树的完整项目或教程。在这个项目中,用户可能可以找到完整的源代码、文档说明以及可能的测试用例。这些资源对于学习AVL树的实现细节和实践应用是宝贵的,可以帮助开发者深入理解并掌握AVL树的算法及其在实际编程中的运用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【ggplot2绘图技巧】:R语言中的数据可视化艺术

![【ggplot2绘图技巧】:R语言中的数据可视化艺术](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. ggplot2绘图基础 在本章节中,我们将开始探索ggplot2,这是一个在R语言中广泛使用的绘图系统,它基于“图形语法”这一理念。ggplot2的设计旨在让绘图过程既灵活又富有表现力,使得用户能够快速创建复杂而美观的图形。 ## 1.1 ggplot2的安装和加载 首先,确保ggplot2包已经被安装。如果尚未安装,可以使用以下命令进行安装: ```R install.p
recommend-type

HAL库怎样将ADC两个通道的电压结果输出到OLED上?

HAL库通常是指硬件抽象层(Hardware Abstraction Layer),它是一个软件组件,用于管理和控制嵌入式系统中的硬件资源,如ADC(模拟数字转换器)和OLED(有机发光二极管显示屏)。要将ADC读取的两个通道电压值显示到OLED上,你可以按照以下步骤操作: 1. **初始化硬件**: 首先,你需要通过HAL库的功能对ADC和OLED进行初始化。这包括配置ADC的通道、采样速率以及OLED的分辨率、颜色模式等。 2. **采集数据**: 使用HAL提供的ADC读取函数,读取指定通道的数据。例如,在STM32系列微控制器中,可能会有`HAL_ADC_ReadChannel()
recommend-type

小学语文教学新工具:创新黑板设计解析

资源摘要信息: 本资源为行业文档,主题是设计装置,具体关注于一种小学语文教学黑板的设计。该文档通过详细的设计说明,旨在为小学语文教学场景提供一种创新的教学辅助工具。由于资源的标题、描述和标签中未提供具体的设计细节,我们仅能从文件名称推测文档可能包含了关于小学语文教学黑板的设计理念、设计要求、设计流程、材料选择、尺寸规格、功能性特点、以及可能的互动功能等方面的信息。此外,虽然没有标签信息,但可以推断该文档可能针对教育技术、教学工具设计、小学教育环境优化等专业领域。 1. 教学黑板设计的重要性 在小学语文教学中,黑板作为传统而重要的教学工具,承载着教师传授知识和学生学习互动的重要角色。一个优秀的设计可以提高教学效率,激发学生的学习兴趣。设计装置时,考虑黑板的适用性、耐用性和互动性是非常必要的。 2. 教学黑板的设计要求 设计小学语文教学黑板时,需要考虑以下几点: - 安全性:黑板材质应无毒、耐磨损,边角处理要圆滑,避免在使用中造成伤害。 - 可视性:黑板的大小和高度应适合小学生使用,保证最远端的学生也能清晰看到上面的内容。 - 多功能性:黑板除了可用于书写字词句之外,还可以考虑增加多媒体展示功能,如集成投影幕布或电子白板等。 - 环保性:使用可持续材料,比如可回收的木材或环保漆料,减少对环境的影响。 3. 教学黑板的设计流程 一个典型的黑板设计流程可能包括以下步骤: - 需求分析:明确小学语文教学的需求,包括空间大小、教学方法、学生人数等。 - 概念设计:提出初步的设计方案,并对方案的可行性进行分析。 - 制图和建模:绘制详细的黑板平面图和三维模型,为生产制造提供精确的图纸。 - 材料选择:根据设计要求和成本预算选择合适的材料。 - 制造加工:按照设计图纸和材料标准进行生产。 - 测试与评估:在实际教学环境中测试黑板的使用效果,并根据反馈进行必要的调整。 4. 教学黑板的材料选择 - 传统黑板:传统的黑板多由优质木材和专用黑板漆制成,耐用且书写流畅。 - 绿色环保材料:考虑到环保和学生健康,可以选择无毒或低VOC(挥发性有机化合物)排放的材料。 - 智能材料:如可擦洗的特殊漆料,使黑板表面更加光滑,便于擦拭。 5. 教学黑板的尺寸规格 黑板的尺寸规格应根据实际教室空间和学生的平均身高来设计。一般来说,小学教室的黑板高度应设置在120cm至150cm之间,长度则根据教室墙壁的长度而定,但至少应保证可以容纳整页A4纸的书写空间。 6. 教学黑板的功能性特点 - 书写性能:黑板表面应具备良好的书写性能,使粉笔或马克笔的书写和擦拭都十分顺畅。 - 可视化辅助:集成的可视化工具,如辅助灯、放大镜等,可以帮助教师更有效地展示教学内容。 - 互动性设计:考虑增加互动性元素,例如磁性或可擦写的表面,可以提高学生参与度。 7. 教学黑板的互动功能 随着信息技术的发展,教学黑板可以集成多媒体技术,如触摸屏功能、电子白板功能、互联网接入等,实现与电子设备的互动,从而丰富教学手段,提高教学的趣味性和效率。 综上所述,本资源提供的设计装置文档,聚焦于一种小学语文教学黑板的设计,涵盖了从设计理念到功能实现的全方位内容,旨在通过创新的设计提升小学语文教学的品质和效率。