求测试信号多尺度排列熵的python代码
时间: 2024-05-07 12:22:56 浏览: 96
以下是一个使用Python计算多尺度排列熵的示例代码:
```python
import numpy as np
from scipy.spatial.distance import pdist, squareform
from itertools import permutations
def multiscale_permutation_entropy(signal, scale, delay):
n = len(signal)
permutations = np.array(list(permutations(range(delay))))
num_permutations = len(permutations)
# Split the signal into non-overlapping segments of length scale
num_subseries = int(np.floor((n - scale) / scale)) + 1
split_indices = np.arange(num_subseries) * scale
# Calculate permutation entropy for each subseries
pe_subseries = np.zeros(num_subseries)
for i in range(num_subseries):
subseries = signal[split_indices[i]:split_indices[i] + scale]
pe_subseries[i] = permutation_entropy(subseries, delay, permutations)
# Calculate multiscale permutation entropy
mpe = np.mean(pe_subseries)
return mpe
def permutation_entropy(signal, delay, permutations):
n = len(signal)
d = squareform(pdist(signal.reshape(-1,1)))
count = 0
for i in range(n - delay):
for j in range(i + delay, n):
if d[i, j] < d[i + delay, j]:
count += 1
pe = np.log(count / len(permutations))
return pe
# Example usage
signal = np.random.rand(1000)
scale = 10
delay = 1
mpe = multiscale_permutation_entropy(signal, scale, delay)
print("Multiscale permutation entropy:", mpe)
```
该代码使用了Scipy中的`pdist`函数来计算信号中各数据点之间的距离,并使用了`itertools`模块来生成所有可能的排列。函数`multiscale_permutation_entropy`通过将信号分割成多个子序列,并计算每个子序列的排列熵来计算多尺度排列熵。函数`permutation_entropy`计算给定延迟和排列的排列熵。
阅读全文