class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x))
时间: 2023-08-22 21:07:11 浏览: 196
这段代码是PyTorch中的一个卷积层的实现,它继承了nn.Module类,包含了两个函数:__init__和forward。
__init__函数中,定义了一个卷积层和一个批归一化层,其中nn.Conv2d是一个二维卷积层,它的输入和输出都是四维张量,第一个参数c1是输入通道数,第二个参数c2是输出通道数,k是卷积核大小,s是卷积步长,p是卷积的padding大小,g是卷积的分组数。nn.BatchNorm2d是一个二维批归一化层,用于规范化卷积层的输出,防止梯度消失或爆炸的问题。nn.SiLU是一个激活函数,它对输入进行sigmoid函数的运算,可以增强模型的非线性表达能力。
forward函数是这个卷积层的前向传播函数,它将输入x作为参数,经过卷积层、批归一化层和激活函数后,返回卷积输出。forward_fuse函数与forward函数的区别在于,它不包含批归一化层,用于实现卷积层和激活函数的融合。
这段代码的作用是实现卷积层的功能,可以被其他模型调用。
相关问题
class Conv(nn.Module): # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation) default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x)) 替换成动态卷积
下面是将上述代码中的标准卷积替换成动态卷积的代码示例:
```python
class DynamicConv(nn.Module):
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
super().__init__()
self.dconv = nn.Conv2d(c1, c1 * k * k, kernel_size=k, stride=s, padding=p, dilation=d, groups=c1, bias=False)
self.pwconv = nn.Conv2d(c1 * k * k, c2, kernel_size=1, stride=1, padding=0, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
x = self.dconv(x)
x = self.pwconv(x)
x = self.bn(x)
x = self.act(x)
return x
```
该代码使用了深度可分离卷积的思想,将动态卷积分解成深度卷积和逐点卷积两个部分。其中,深度卷积用于对每个通道进行卷积,而逐点卷积用于将所有通道的输出合并成最终的输出特征图。深度卷积的卷积核是动态生成的,可以根据输入特征图的大小和形状动态调整。
class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True), nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class SqueezeAttentionBlock(nn.Module): def __init__(self, ch_in, ch_out): super(SqueezeAttentionBlock, self).__init__() self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) self.conv = conv_block(ch_in, ch_out) self.conv_atten = conv_block(ch_in, ch_out) self.upsample = nn.Upsample(scale_factor=2) def forward(self, x): # print(x.shape) x_res = self.conv(x) # print(x_res.shape) y = self.avg_pool(x) # print(y.shape) y = self.conv_atten(y) # print(y.shape) y = self.upsample(y) # print(y.shape, x_res.shape) return (y * x_res) + y
这段代码定义了两个模块:conv_block和SqueezeAttentionBlock。conv_block是一个基本的卷积块,包含两个3x3的卷积层和一个ReLU激活函数。SqueezeAttentionBlock是一个用于对特征图进行注意力加权的模块,包含了一个平均池化层,一个卷积块用于学习注意力权重,一个上采样层用于将池化后的特征图恢复到原始尺寸,并通过乘法将注意力权重应用到原始特征图上。这两个模块都是由nn.Module派生而来,用于构造神经网络的基本组件。
阅读全文