world<-list(geom_path(data=map_data(\world2\"),aes(long,lat,group=group)"

时间: 2023-05-03 16:05:04 浏览: 50
这是一个R语言中绘制地图时常见的一行代码。其中的关键词“list”表示创建一个列表,该列表包含一个“geom_path”函数的调用。这个函数在地图上绘制出具有一定顺序的多边形,通常用于绘制国家或州的边界。在其中的参数“data”中,调用了“map_data”函数获取地图数据,“world2”则是这个数据的具体来源,可以是R语言自带的也可以是外部获取。而“aes”参数则代表对经度(long)和纬度(lat)两个变量进行操作,并且按照“group”变量的规定进行分组,以此呈现出更为准确的地图边界效果。总的来说,这是一个拥有多个参数和特定规定的一行函数,是绘制地图时必不可少的一步操作。
相关问题

ggplot() + geom_path(data = world_map, aes(x = long, y = lat, group = group), color = "gray") + geom_point(data = baiyang_data, aes(x = Longitude, y = Latitude), color = "white")+ geom_point(data = qingyang_data, aes(x = Longitude, y = Latitude), color = "lightgreen") + geom_point(data = heiyang_data, aes(x = Longitude, y = Latitude), color = "black") + geom_point(data = daye_data, aes(x = Longitude, y = Latitude), color = "yellowgreen") + geom_point(data = huyang_data, aes(x = Longitude, y = Latitude), color = "orange") + ggtitle("map")这段代码中哪里有问题

这段代码中没有明显的语法错误,但是缺少了一个加号(+)来连接ggtitle()函数,它应该在最后一个geom_point()函数的后面。应该将代码修改为: ``` ggplot() + geom_path(data = world_map, aes(x = long, y = lat, group = group), color = "gray") + geom_point(data = baiyang_data, aes(x = Longitude, y = Latitude), color = "white") + geom_point(data = qingyang_data, aes(x = Longitude, y = Latitude), color = "lightgreen") + geom_point(data = heiyang_data, aes(x = Longitude, y = Latitude), color = "black") + geom_point(data = daye_data, aes(x = Longitude, y = Latitude), color = "yellowgreen") + geom_point(data = huyang_data, aes(x = Longitude, y = Latitude), color = "orange") + ggtitle("map") ``` 这样就可以正确地绘制地图,并添加标题。

x<-seq(-5,5,by=0.01); y<-f1(x,a,b); df<-data.frame(x,y); g<-ggplot(df,aes(x,y)); g<-g+geom_line(col=’red’); #红色曲线 g<-g+geom_vline(yintercept=0)+geom_hline(yintercept=0); #坐标轴 g<-g+ggtitle(paste(“y=”,a,”*x+”,b));

这段代码使用R语言中的ggplot2包绘制函数y=f1(x,a,b)的图形。让我逐步解释一下代码的每个部分: 1. `x<-seq(-5,5,by=0.01)`:这行代码创建了一个包含从-5到5的间隔为0.01的序列,作为x的取值范围。 2. `y<-f1(x,a,b)`:这行代码使用函数f1计算对应于x值的y值。其中,a和b是函数f1的参数。 3. `df<-data.frame(x,y)`:这行代码将x和y组合成一个数据框,用于后续绘图。 4. `g<-ggplot(df,aes(x,y))`:这行代码创建了一个ggplot对象g,并指定数据框df作为数据源,x和y作为绘图的映射变量。 5. `g<-g+geom_line(col=’red’)`:这行代码添加了一个线条图层,用红色表示,并将其添加到ggplot对象g中。 6. `g<-g+geom_vline(yintercept=0)+geom_hline(yintercept=0)`:这行代码添加了垂直和水平参考线,使得坐标轴可见。 7. `g<-g+ggtitle(paste(“y=”,a,”*x+”,b))`:这行代码添加了图形的标题,标题内容为字符串"y=a*x+b",其中a和b是函数f1的参数。 综合起来,这段代码使用ggplot2包绘制了函数y=f1(x,a,b)的图形,其中x的取值范围为-5到5,步长为0.01。图形包括红色的曲线、坐标轴和标题。

相关推荐

帮我修改以下代码,使他们可以正确运行:library(ggplot2) library(gridExtra) ggplot(df, aes(x = x, y = y, color = z)) + geom_point() p1 <- ggplot(subset(df, z == 'a'), aes(x = x, y = y)) + geom_point(color = 'black') p2 <- ggplot(subset(df, z == 'b'), aes(x = x, y = y)) + geom_point(color = 'black') p3 <- ggplot(subset(df, z == 'c'), aes(x = x, y = y)) + geom_point(color = 'black') grid.arrange(p1, p2, p3, ncol = 3) centroids <- aggregate(df[, c('x', 'y')], by = list(df$z), FUN = mean) names(centroids)[1] <- 'z' p1 <- ggplot(df, aes(x = x, y = y)) + geom_point(aes(color = z)) + geom_point(data = subset(centroids, z == 'a'), aes(x = x, y = y, color = z), size = 4) p2 <- ggplot(df, aes(x = x, y = y)) + geom_point(aes(color = z)) + geom_point(data = subset(centroids, z == 'b'), aes(x = x, y = y, color = z), size = 4) p3 <- ggplot(df, aes(x = x, y = y)) + geom_point(aes(color = z)) + geom_point(data = subset(centroids, z == 'c'), aes(x = x, y = y, color = z), size = 4) grid.arrange(p1, p2, p3, ncol = 3) p1 <- ggplot(df, aes(x = x, y = y)) + geom_point(data = subset(df, z == 'a'), aes(color = z)) + geom_point(data = subset(df, z != 'a'), color = 'grey70') p2 <- ggplot(df, aes(x = x, y = y)) + geom_point(data = subset(df, z == 'b'), aes(color = z)) + geom_point(data = subset(df, z != 'b'), color = 'grey70') p3 <- ggplot(df, aes(x = x, y = y)) + geom_point(data = subset(df, z == 'c'), aes(color = z)) + geom_point(data = subset(df, z != 'c'), color = 'grey70') grid.arrange(p1, p2, p3, ncol = 3)

PCA_Plot_3=function (data,Annotation,VAR,Color) { # logcountdata row:genes,column: samples pca <- prcomp(data) pca_out<-as.data.frame(pca$x) df_out<- pca_out %>%tibble::rownames_to_column(var=VAR) %>% left_join(., Annotation) #df_out<- merge (pca_out,Annotation,by.x=0,by.y=0) # label_color<- factor(df_out[,group]) ggplot(df_out,aes_string(x="PC1",y="PC2")) +geom_point(aes_string(colour = Color)) } Deseq2_Deseq_function_2=function (Countdata,Coldata) { dds_fil <- DESeq2:: DESeqDataSetFromMatrix(countData =Countdata, colData = Coldata, design = ~Group) dds_fil_Deg<- DESeq2::DESeq(dds_fil) return(dds_fil_Deg) } pheatmap_singscore=function (pathways,data,Annotation) { Gene_select_anno= data[,colnames(data) %in% pathways] %>%t()%>%.[,rownames(Annotation)] # return(Gene_select_anno) # Anno_expression_data=Gene_select_anno[,c("SYMBOL",Group_select)] %>% as.data.frame() %>% distinct() %>% na.omit() # rownames(Anno_expression_data)=Anno_expression_data[,"SYMBOL"] # Annotation=group_anno["Gene_type"] # input= Anno_expression_data[,Group_select] # F2_pheatmap <- pheatmap::pheatmap(input, cellwigermline calling GATKdth = 10, cellheight = 12, scale = "row", # treeheight_row = 5, # show_rownames = T,show_colnames = T, # annotation_col= Annotation, # # annotation_row=Annotation, # annotation_legend=Label_def, # cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") pheatmap::pheatmap(Gene_select_anno, cellwigermline=5, cellheight = 10,cellwidth = 10, scale = "row", treeheight_row = 5, show_rownames = T,show_colnames = F, annotation_col= Annotation, # annotation_row=Annotation, #annotation_legend=Label_def, cluster_rows = T, cluster_cols = F,clustering_distance_rows = "euclidean") } matrix.please<-function(x) { m<-as.matrix(x[,-1]) rownames(m)<-x[,1] m } 这是r语言的代码,告诉我每一条代码的作用和意义

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到