stm32f103c8t6用pid算法控制五路循迹小车

时间: 2023-09-15 09:19:32 浏览: 37
循迹小车的 PID 控制算法一般分为两个部分:传感器数据采集和 PID 控制器实现。 第一部分:传感器数据采集 循迹小车需要利用传感器采集地面黑线的位置,根据黑线的位置来判断小车行驶方向。一般采用红外线传感器和光电二极管模块来实现。 第二部分:PID 控制器实现 PID 控制器是基于误差信号来控制小车行驶方向的。控制器需要计算出误差信号,然后输出控制量来控制小车的方向。PID 控制器包括三个部分:比例控制、积分控制和微分控制。 比例控制部分:输出的控制量与误差信号成比例关系,即控制量 = Kp × 误差信号。 积分控制部分:用于消除静态误差,输出的控制量与误差信号的积分成比例关系,即控制量 = Ki × 积分误差信号。 微分控制部分:用于消除动态误差,输出的控制量与误差信号的微分成比例关系,即控制量 = Kd × 微分误差信号。 在实现 PID 控制器的过程中,需要注意一些细节问题,如调节 PID 控制器的参数、采样时间、控制量输出的限制等。 总的来说,实现循迹小车的 PID 控制器需要掌握基本的电路原理和嵌入式系统编程知识。
相关问题

stm32f103c8t6用pid算法控制五路循迹小车(无需测速,用直流电机控制)

好的,下面是一个简单的基于STM32F103C8T6的PID算法控制五路循迹小车的示例代码: ```c #include "stm32f10x.h" // 定义电机控制引脚 #define MOTOR_1_A_Pin GPIO_Pin_0 #define MOTOR_1_B_Pin GPIO_Pin_1 #define MOTOR_2_A_Pin GPIO_Pin_2 #define MOTOR_2_B_Pin GPIO_Pin_3 #define MOTOR_3_A_Pin GPIO_Pin_4 #define MOTOR_3_B_Pin GPIO_Pin_5 #define MOTOR_4_A_Pin GPIO_Pin_6 #define MOTOR_4_B_Pin GPIO_Pin_7 #define MOTOR_5_A_Pin GPIO_Pin_8 #define MOTOR_5_B_Pin GPIO_Pin_9 // 定义循迹传感器引脚 #define SENSOR_1_Pin GPIO_Pin_10 #define SENSOR_2_Pin GPIO_Pin_11 #define SENSOR_3_Pin GPIO_Pin_12 #define SENSOR_4_Pin GPIO_Pin_13 #define SENSOR_5_Pin GPIO_Pin_14 // PID参数 double kp = 0.5; double ki = 0.1; double kd = 0.1; // 循迹传感器阈值 int threshold = 500; // 当前偏差 int currentError = 0; // 上一次偏差 int lastError = 0; // 积分项 double integral = 0; // 微分项 double derivative = 0; // 目标速度(PWM占空比) int targetSpeed = 100; // 左右电机PWM值 int pwmLeft = 0; int pwmRight = 0; // 初始化GPIO void initGPIO() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Pin = MOTOR_1_A_Pin | MOTOR_1_B_Pin | MOTOR_2_A_Pin | MOTOR_2_B_Pin | MOTOR_3_A_Pin | MOTOR_3_B_Pin | MOTOR_4_A_Pin | MOTOR_4_B_Pin | MOTOR_5_A_Pin | MOTOR_5_B_Pin; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Pin = SENSOR_1_Pin | SENSOR_2_Pin | SENSOR_3_Pin | SENSOR_4_Pin | SENSOR_5_Pin; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOB, &GPIO_InitStruct); } // 读取循迹传感器值 void readSensors(int *sensorValues) { sensorValues[0] = ADC_GetConversionValue(ADC1); sensorValues[1] = ADC_GetConversionValue(ADC2); sensorValues[2] = ADC_GetConversionValue(ADC3); sensorValues[3] = ADC_GetConversionValue(ADC4); sensorValues[4] = ADC_GetConversionValue(ADC5); } // 控制电机 void controlMotors(int pwmLeft, int pwmRight) { if (pwmLeft > 0) { GPIO_SetBits(GPIOA, MOTOR_1_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_1_B_Pin); TIM_SetCompare1(TIM1, pwmLeft); } else if (pwmLeft < 0) { GPIO_ResetBits(GPIOA, MOTOR_1_A_Pin); GPIO_SetBits(GPIOA, MOTOR_1_B_Pin); TIM_SetCompare1(TIM1, -pwmLeft); } else { GPIO_ResetBits(GPIOA, MOTOR_1_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_1_B_Pin); TIM_SetCompare1(TIM1, 0); } if (pwmRight > 0) { GPIO_SetBits(GPIOA, MOTOR_2_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_2_B_Pin); TIM_SetCompare2(TIM1, pwmRight); } else if (pwmRight < 0) { GPIO_ResetBits(GPIOA, MOTOR_2_A_Pin); GPIO_SetBits(GPIOA, MOTOR_2_B_Pin); TIM_SetCompare2(TIM1, -pwmRight); } else { GPIO_ResetBits(GPIOA, MOTOR_2_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_2_B_Pin); TIM_SetCompare2(TIM1, 0); } if (pwmLeft > 0) { GPIO_SetBits(GPIOA, MOTOR_3_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_3_B_Pin); TIM_SetCompare3(TIM1, pwmLeft); } else if (pwmLeft < 0) { GPIO_ResetBits(GPIOA, MOTOR_3_A_Pin); GPIO_SetBits(GPIOA, MOTOR_3_B_Pin); TIM_SetCompare3(TIM1, -pwmLeft); } else { GPIO_ResetBits(GPIOA, MOTOR_3_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_3_B_Pin); TIM_SetCompare3(TIM1, 0); } if (pwmRight > 0) { GPIO_SetBits(GPIOA, MOTOR_4_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_4_B_Pin); TIM_SetCompare4(TIM1, pwmRight); } else if (pwmRight < 0) { GPIO_ResetBits(GPIOA, MOTOR_4_A_Pin); GPIO_SetBits(GPIOA, MOTOR_4_B_Pin); TIM_SetCompare4(TIM1, -pwmRight); } else { GPIO_ResetBits(GPIOA, MOTOR_4_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_4_B_Pin); TIM_SetCompare4(TIM1, 0); } if (pwmLeft > 0) { GPIO_SetBits(GPIOA, MOTOR_5_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_5_B_Pin); } else if (pwmLeft < 0) { GPIO_ResetBits(GPIOA, MOTOR_5_A_Pin); GPIO_SetBits(GPIOA, MOTOR_5_B_Pin); } else { GPIO_ResetBits(GPIOA, MOTOR_5_A_Pin); GPIO_ResetBits(GPIOA, MOTOR_5_B_Pin); } } // 计算PID控制量 void calculatePID(int *sensorValues) { currentError = 0; int sum = 0; for (int i = 0; i < 5; i++) { if (sensorValues[i] > threshold) { currentError += (i - 2) * sensorValues[i]; sum += sensorValues[i]; } } if (sum == 0) { currentError = 0; } else { currentError /= sum; } integral += currentError; derivative = currentError - lastError; lastError = currentError; pwmLeft = targetSpeed + kp * currentError + ki * integral + kd * derivative; pwmRight = targetSpeed - kp * currentError - ki * integral - kd * derivative; } int main(void) { // 初始化GPIO initGPIO(); // 初始化ADC RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | RCC_APB2Periph_ADC3 | RCC_APB2Periph_ADC4 | RCC_APB2Periph_ADC5, ENABLE); ADC_InitTypeDef ADC_InitStruct; ADC_InitStruct.ADC_Mode = ADC_Mode_Independent; ADC_InitStruct.ADC_ScanConvMode = ENABLE; ADC_InitStruct.ADC_ContinuousConvMode = ENABLE; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfChannel = 5; ADC_Init(ADC1, &ADC_InitStruct); ADC_Init(ADC2, &ADC_InitStruct); ADC_Init(ADC3, &ADC_InitStruct); ADC_Init(ADC4, &ADC_InitStruct); ADC_Init(ADC5, &ADC_InitStruct); ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC4, ADC_Channel_13, 1, ADC_SampleTime_55Cycles5); ADC_RegularChannelConfig(ADC5, ADC_Channel_14, 1, ADC_SampleTime_55Cycles5); ADC_Cmd(ADC1, ENABLE); ADC_Cmd(ADC2, ENABLE); ADC_Cmd(ADC3, ENABLE); ADC_Cmd(ADC4, ENABLE); ADC_Cmd(ADC5, ENABLE); ADC_ResetCalibration(ADC1); ADC_ResetCalibration(ADC2); ADC_ResetCalibration(ADC3); ADC_ResetCalibration(ADC4); ADC_ResetCalibration(ADC5); while (ADC_GetResetCalibrationStatus(ADC1) || ADC_GetResetCalibrationStatus(ADC2) || ADC_GetResetCalibrationStatus(ADC3) || ADC_GetResetCalibrationStatus(ADC4) || ADC_GetResetCalibrationStatus(ADC5)); ADC_StartCalibration(ADC1); ADC_StartCalibration(ADC2); ADC_StartCalibration(ADC3); ADC_StartCalibration(ADC4); ADC_StartCalibration(ADC5); while (ADC_GetCalibrationStatus(ADC1) || ADC_GetCalibrationStatus(ADC2) || ADC_GetCalibrationStatus(ADC3) || ADC_GetCalibrationStatus(ADC4) || ADC_GetCalibrationStatus(ADC5)); ADC_SoftwareStartConvCmd(ADC1, ENABLE); ADC_SoftwareStartConvCmd(ADC2, ENABLE); ADC_SoftwareStartConvCmd(ADC3, ENABLE); ADC_SoftwareStartConvCmd(ADC4, ENABLE); ADC_SoftwareStartConvCmd(ADC5, ENABLE); // 初始化定时器 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); TIM_TimeBaseInitTypeDef TIM_TimeBaseStruct; TIM_TimeBaseStruct.TIM_Prescaler = 72 - 1; TIM_TimeBaseStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseStruct.TIM_Period = 1000 - 1; TIM_TimeBaseStruct.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStruct.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStruct); TIM_Cmd(TIM1, ENABLE); TIM_OCInitTypeDef TIM_OCInitStruct; TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Disable; TIM_OCInitStruct.TIM_Pulse = 0; TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC1Init(TIM1, &TIM_OCInitStruct); TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC4Init(TIM1, &TIM_OCInitStruct); while (1) { int sensorValues[5]; readSensors(sensorValues); calculatePID(sensorValues); controlMotors(pwmLeft, pwmRight); } } ``` 这个代码中,我们使用了STM32F103C8T6的定时器和PWM功能来控制电机的转速,使用了STM32F103C8T6的ADC功能来读取循迹传感器的值,并通过PID算法计算出左右电机的PWM值,从而实现对五路循迹小车的控制。

stm32f103c8t6用pid算法写一个五路的循迹小车

首先,需要了解PID控制算法的基本原理。PID控制器是一种常见的控制器,它可以通过测量当前状态和目标状态之间的差异来计算输出信号,从而使系统稳定在目标状态。PID控制器由三部分组成:比例项、积分项和微分项,可以通过调整这三个项的权重来优化控制器的性能。 对于循迹小车,需要使用线性光敏二极管(LDR)传感器来检测车辆的位置,然后使用PID控制器来调整车轮的速度,使车辆沿着轨迹行驶。 以下是一个简单的 PID 控制器的实现示例: ```c #include <stdint.h> // PID控制器参数 #define KP 0.5 #define KI 0.2 #define KD 0.1 // PID控制器状态 typedef struct { float error; float error_sum; float error_diff; float last_error; } pid_state_t; // PID控制器初始化 void pid_init(pid_state_t *pid) { pid->error = 0; pid->error_sum = 0; pid->error_diff = 0; pid->last_error = 0; } // PID控制器计算输出 float pid_compute(pid_state_t *pid) { float output = 0; pid->error_diff = pid->error - pid->last_error; pid->error_sum += pid->error; output = KP * pid->error; output += KI * pid->error_sum; output += KD * pid->error_diff; pid->last_error = pid->error; return output; } // 检测传感器状态 uint8_t get_sensor_state(void); int main(void) { // 初始化PID控制器 pid_state_t pid; pid_init(&pid); // 循迹小车控制循环 while (1) { // 检测传感器状态 uint8_t sensor_state = get_sensor_state(); // 计算偏差值 float error = /* 根据传感器状态计算偏差值 */; // 更新PID控制器状态 pid.error = error; float output = pid_compute(&pid); // 根据PID输出控制车轮速度 /* 根据输出控制车轮速度 */ } } ``` 在这个示例中,我们使用了一个 `pid_state_t` 结构体来存储 PID 控制器的状态,其中包括当前偏差值、偏差值累加、偏差值差分和上一次偏差值。我们还定义了三个常量 `KP`、`KI` 和 `KD` 来设置比例、积分和微分项的权重。 在循迹小车的控制循环中,我们首先检测传感器状态,然后根据传感器状态计算偏差值。接着,我们更新 PID 控制器的状态,并通过调用 `pid_compute` 函数计算输出值。最后,根据输出值控制车轮速度,使车辆沿着轨迹行驶。 需要注意的是,这只是一个简单的示例,实际应用中需要根据具体的硬件和传感器进行调整。另外,循迹小车的控制循环还需要考虑避障、转向等因素,需要进一步完善和优化。

相关推荐

zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

最新推荐

recommend-type

用AIDA模型,分析知乎、小红书和Facebook的广告效果.docx

用AIDA模型,分析知乎、小红书和Facebook的广告效果.docx
recommend-type

pd27.py1111111111111

pd27.py1111111111111
recommend-type

234_基于微信小程序的车位预约系统的设计与实施-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

蓝桥杯蓝桥杯蓝桥杯蓝桥杯蓝桥杯蓝桥杯蓝桥杯.txt

蓝桥杯蓝桥杯蓝桥杯蓝桥杯蓝桥杯蓝桥杯
recommend-type

ipython-0.13.1-py2.7.egg

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。