#include <bits/stdc++.h> using namespace std; char tree[4096]; string a; //获取 //返回子节点坐标 int deep(int p) { return pow(2,p); } int ls(int p) { return 2*p; } int rs(int p) { return 2*p+1; } void FBI(int letf,int right,int p) //左界,右界,当前节点序号 { if(left==right) //只有一个元素了 { if(a[letf]=='1') tree[p]='I'; else tree[p]='B'; return ; } int mid=(left+right)/2; //FBI(mid+1,right,p+1); //FBI(left,mid,p+1); FBI(mid+1,right,rs(p)); FBI(left,mid,ls(p)); if(tree[ls(p)]=='I'&&tree[rs(p)]=='I') tree[p]='I'; else if(tree[ls(p)]=='B'&&tree[rs(p)]=='B') tree[p]='B'; else tree[p]='F'; } void postorder(int p) //后序遍历 { if(tree[ls(p)]) postorder(ls(p)); //如果左子节点存在,就往下走 if(tree[rs(p)]) postorder(rs(p)); //直到所有子节点都走完后,开始输出 cout<<tree[p]; } int main () { int n; cin>>n>>a; FBI(1,a.size(),1); postorder(1); return 0; } 为什么无法运行

时间: 2023-12-06 12:42:25 浏览: 30
代码中有一些错误,可能是拼写错误或变量名不匹配等问题。以下是可能需要修改的地方: 1. 在函数 `FBI` 中,参数 `letf` 应该改为 `left`。 2. 在函数 `FBI` 中,应该将变量 `mid` 的计算放在 `if` 语句前面。 3. 在函数 `FBI` 中,递归调用的参数 `p+1` 应该改为 `ls(p)` 或 `rs(p)`。 4. 在函数 `postorder` 中,判断子节点是否存在的条件应该为 `tree[ls(p)] != '\0'` 或 `tree[rs(p)] != '\0'`。 修改后的代码如下:
相关问题

#include <bits/stdc++.h> using namespace std; typedef string ElemType; typedef struct BitNode { ElemType data; struct BitNode *lchild,*rchild; } BitNode,*BiTree; //char sc[10]= {"+-*/"}; void CreateBiTree(BiTree &t) { string ch; cin >> ch; if(ch[0] == '#') t = NULL; else { t = new BitNode; t->data = ch; CreateBiTree(t->lchild); CreateBiTree(t->rchild); } } void InOrderTraverse(BiTree t) { if(t) { string op = t->data; if(op[0]<'0' || op[0]>'9') cout << '('; InOrderTraverse(t->lchild); cout << t->data ; InOrderTraverse(t->rchild); if(op[0]<'0' || op[0]>'9') cout << ')'; } /***********************************/ } int main() { BiTree tree = new BitNode; string ch; while(cin >> ch) { tree->data = ch; CreateBiTree(tree->lchild); CreateBiTree(tree->rchild); InOrderTraverse(tree); printf("\n"); } return 0; }换为c语言

把代码中的头文件改为标准C语言的头文件,去掉using namespace std,把string改为char数组,去掉注释,把printf改为printf_s(或者使用头文件stdio.h中的printf函数)等等,修改后的代码如下: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> typedef char ElemType; typedef struct BitNode { ElemType data; struct BitNode *lchild,*rchild; } BitNode,*BiTree; void CreateBiTree(BiTree *t) { char ch; scanf("%c", &ch); if(ch == '#') *t = NULL; else { *t = (BitNode*)malloc(sizeof(BitNode)); (*t)->data = ch; CreateBiTree(&((*t)->lchild)); CreateBiTree(&((*t)->rchild)); } } void InOrderTraverse(BiTree t) { if(t) { char op = t->data; if(op < '0' || op > '9') { printf("("); } InOrderTraverse(t->lchild); printf("%c", t->data); InOrderTraverse(t->rchild); if(op < '0' || op > '9') { printf(")"); } } } int main() { BiTree tree = NULL; char ch; while(scanf("%c", &ch) != EOF) { tree = (BitNode*)malloc(sizeof(BitNode)); tree->data = ch; CreateBiTree(&(tree->lchild)); CreateBiTree(&(tree->rchild)); InOrderTraverse(tree); printf_s("\n"); } return 0; } ```

#include<bits/stdc++.h> using namespace std; string str; int len; struct treeNode{ char data; treeNode *L_child,*R_child; treeNode(char d){ data=d; } }; template<class T> class Tree{ public: Tree(){ root=NULL; } treeNode* createNode() { treeNode *t; if(len>=str.size()){ return NULL; } T data = str[len++]; if(data=='*'){ t=NULL; }else{ t=new treeNode(data); t->L_child=createNode(); t->R_child=createNode(); } return t; }; treeNode* getRoot(); int getAns(treeNode *root); void LRN(treeNode *root); private: treeNode *root; }; template<class T> treeNode* Tree<T>::getRoot() { return this->root; } template<class T> int Tree<T>::getAns(treeNode *root){ if(root==NULL) return 0; int ans = 0; if(root->L_child!=NULL&&root->R_child!=NULL){ ans=1; } return ans+getAns(root->L_child)+getAns(root->R_child); } int main() { while(cin>>str){ len=0; Tree<char> *tree = new Tree<char>(); treeNode *root = tree->getRoot(); root = tree->createNode(); cout<<tree->getAns(root)<<endl; } }通过代码的功能用c语言来实现

这段代码主要功能是构建一棵二叉树,并计算该二叉树中有多少个节点的左右子树都不为空。在 C 语言中,可以使用结构体和递归函数来实现相同的功能。 以下是使用 C 语言实现的代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> struct TreeNode { char data; struct TreeNode *left; struct TreeNode *right; }; struct Tree { struct TreeNode *root; }; typedef struct TreeNode TreeNode; typedef struct Tree Tree; TreeNode* createNode(char data) { TreeNode *node = (TreeNode*) malloc(sizeof(TreeNode)); node->data = data; node->left = NULL; node->right = NULL; return node; } TreeNode* createTree(char* str, int* len) { if (*len >= strlen(str)) { return NULL; } char data = str[(*len)++]; if (data == '*') { return NULL; } TreeNode *node = createNode(data); node->left = createTree(str, len); node->right = createTree(str, len); return node; } int getAns(TreeNode *root) { if (root == NULL) { return 0; } int ans = 0; if (root->left != NULL && root->right != NULL) { ans = 1; } return ans + getAns(root->left) + getAns(root->right); } int main() { char str[100]; while (scanf("%s", str) != EOF) { int len = 0; Tree *tree = (Tree*) malloc(sizeof(Tree)); tree->root = createTree(str, &len); printf("%d\n", getAns(tree->root)); free(tree); } return 0; } ``` 这段代码中,我们定义了两个结构体 TreeNode 和 Tree,分别表示二叉树中的节点和整棵二叉树。在 createNode 函数中,我们通过 malloc 动态分配了一个新的节点,并初始化它的数据和左右子节点指针。在 createTree 函数中,我们使用递归的方式构建二叉树,当遇到字符 '*' 时返回 NULL。在 getAns 函数中,我们递归计算二叉树中满足条件的节点数。在 main 函数中,我们通过 scanf 输入字符串,构建二叉树并计算答案,最后释放内存。

相关推荐

#include<bits/stdc++.h> using namespace std; const int t=10; const int tt=10; typedef struct { int weight; int parent; int lchild; int rchild; } HTNode, HuffmanTree; typedef char ** HuffmanCode; void SelectTwoMin(int upbound, HuffmanTree HT, int &s1, int &s2){ int m1,m2; s1=0,s2=0; m1=1000; m2=1000; for(int i=1;i<=upbound;i++){ int t=HT[i].weight; if(HT[i].parent==0){ if(t<m1) { m2=m1; s2=s1; s1=i; m1=HT[s1].weight; } else if(t<m2) { s2=i; m2=HT[s2].weight; } } } } void HuffmanCoding(HuffmanTree&HT,HuffmanCode&HC,intw,int n){ HT=(HTNode*)malloc((2*n)sizeof(HTNode)); for(int i=1;i<=n;i++,w++){ HT[i].weight=w; HT[i].parent=0; HT[i].lchild=0; HT[i].rchild=0; } int i=n+1; while(i<=2n-1){ int a=0,b=0; SelectTwoMin(i-1,HT,a,b); HT[i].weight=HT[a].weight+HT[b].weight; HT[i].lchild=a;HT[i].rchild=b; HT[i].parent=0; HT[a].parent=i;HT[b].parent=i; i++; } HC=(HuffmanCode)malloc((n+1)sizeof(char)); for(int i=1;i<=n;i++){ char back[n]; back[n-1]='\0'; int j=n-1; for(int c=i,p=HT[i].parent;p!=0;c=p,p=HT[p].parent){ if(HT[p].lchild==c) back[--j]='0'; else back[--j]='1'; } HC[i]=(char)malloc((n-j)*sizeof(char)); strcpy(HC[i],&back[j]); } } int main() { HuffmanTree ht; HuffmanCode hc; int n; string ans; cout<<"请输入需要编码的字符串:"; cin>>ans; n=ans.length(); cout<<"请依次输入每个字符在文件中出现的次数:"<<endl; int w[n]; for(int i = 0; i < n; ++ i) cin>>w[i]; HuffmanCoding(ht, hc, w, n); cout<<"哈夫曼树列表:"<<endl; cout<< setw(tt) << left <<"序号"<< setw(tt) << left <<"次数"<< setw(tt) << left <<"父节点"<< setw(tt) << left <<"左孩子"<< setw(tt) << left <<"右孩子"<<endl; for (int i = 1; i <= 2 * n - 1; ++ i) { cout<< setw(tt) << left <<i<< setw(t) << left <<ht[i].weight<< setw(t) << left <<ht[i].parent<< setw(t) << left <<ht[i].lchild<< setw(t) << left <<ht[i].rchild<<endl; } cout<<"每个节点对应的哈夫曼编码:"<<endl; cout<< setw(tt) << left <<"字符"<< setw(tt) << left <<"编码:"<<endl; for (int i = 1; i <= n; ++ i) cout<< setw(t) << left <<ans[i-1]<< setw(t) << left <<hc[i]<<endl; free(ht); for (int i = 1; i <= n; ++ i) free(hc[i]); return 0; }帮我写出这段代码的伪代码

#include <bits/stdc++.h> using namespace std; #define MAXSIZE 1001 int tot; struct Node{ string data; int lchild; int rchild; int fchild; }node[MAXSIZE]; int stack_num[MAXSIZE];//下标数组 int stack_op[MAXSIZE];//运算符数组 int top_num; int top_op; int op_rank[255]; int makenode(string x){ tot++; node[tot].data=x; node[tot].lchild=0; node[tot].rchild=0; node[tot].fchild=0; return tot; }//叶子节点的构造 int maketree(int a,int b,char c){ tot++; node[tot].data=c; node[tot].lchild=a; node[tot].rchild=b; node[tot].fchild=0; node[a].fchild=tot; node[b].fchild=tot; return tot; }//叶子结点构造树 void print_tree(int x){ if(x==0) return; print_tree(node[x].lchild); print_tree(node[x].rchild); cout<<node[x].data<<' '; }//后序遍历 void push_num(int num){ top_num++; stack_num[top_num]=num; } int pop_num(){ return stack_num[top_num--]; } void push_op(char c){ top_op++; stack_op[top_op]=c; } char pop_op(){ return stack_op[top_op--]; } void solve(){ char c=pop_op(); while(c!='('){ int b=pop_num(); int a=pop_num(); push_num(maketree(a,b,c)); c=pop_op(); } } void judge_op(char c){ if(op_rank[c]>op_rank[stack_op[top_op]]||top_op==0){ push_op(c); return; } char x=pop_op(); int b=pop_num(); int a=pop_num(); push_num(maketree(a,b,x)); judge_op(c); } void clearstack(){ while(top_op!=0){ char c=pop_op(); int b=pop_num(); int a=pop_num(); push_num(maketree(a,b,c)); } } int main(){ op_rank['(']=1; op_rank['+']=2; op_rank['-']=2; op_rank['*']=3; op_rank['/']=3; op_rank[')']=4; string s; getline(cin,s); s=s+'@'; tot=0; string s_num; for(int i=0;i<s.size();i++){ switch(s[i]){ case '@': if(s_num!="") push_num(makenode(s_num)); clearstack(); break; case'(': push_op('('); solve(); break; case '+': case '-': case '*': case '/': if(s_num!="") push_num(makenode(s_num)); s_num=""; judge_op(s[i]); break; default: s_num+=s[i]; break; } } print_tree(pop_num()); return 0; }修改此代码使能输出结果

最新推荐

recommend-type

基于JavaWeb开发的图书管理系统 (源码+数据库).zip-大作业&课程设计

基于JavaWeb开发的图书管理系统 (源码+数据库).zip-大作业&课程设计,本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于JavaWeb开发的图书管理系统 (源码+数据库).zip-大作业&课程设计,本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于JavaWeb开发的图书管理系统 (源码+数据库).zip-大作业&课程设计,本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于JavaWeb开发的图书管理系统 (源码+数据库).zip-大作业&课程设计,本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求如果。
recommend-type

武汉工程大学邮电与信息工程学院在广东2021-2024各专业最低录取分数及位次表.pdf

全国各大学在广东2021-2024各专业最低录取分数及位次表
recommend-type

青岛工学院在广东2021-2024各专业最低录取分数及位次表.pdf

全国各大学在广东2021-2024各专业最低录取分数及位次表
recommend-type

android studio 配套资源 gradle8.9all

android studio 配套资源 gradle8.9all
recommend-type

自动升降收料设备_机械3D图Solidworks设计图.zip

自动升降收料设备_机械3D图Solidworks设计图
recommend-type

AirKiss技术详解:无线传递信息与智能家居连接

AirKiss原理是一种创新的信息传输技术,主要用于解决智能设备与外界无物理连接时的网络配置问题。传统的设备配置通常涉及有线或无线连接,如通过路由器的Web界面输入WiFi密码。然而,AirKiss技术简化了这一过程,允许用户通过智能手机或其他移动设备,无需任何实际连接,就能将网络信息(如WiFi SSID和密码)“隔空”传递给目标设备。 具体实现步骤如下: 1. **AirKiss工作原理示例**:智能插座作为一个信息孤岛,没有物理连接,通过AirKiss技术,用户的微信客户端可以直接传输SSID和密码给插座,插座收到这些信息后,可以自动接入预先设置好的WiFi网络。 2. **传统配置对比**:以路由器和无线摄像头为例,常规配置需要用户手动设置:首先,通过有线连接电脑到路由器,访问设置界面输入运营商账号和密码;其次,手机扫描并连接到路由器,进行子网配置;最后,摄像头连接家庭路由器后,会自动寻找厂商服务器进行心跳包发送以保持连接。 3. **AirKiss的优势**:AirKiss技术简化了配置流程,减少了硬件交互,特别是对于那些没有显示屏、按键或网络连接功能的设备(如无线摄像头),用户不再需要手动输入复杂的网络设置,只需通过手机轻轻一碰或发送一条消息即可完成设备的联网。这提高了用户体验,降低了操作复杂度,并节省了时间。 4. **应用场景扩展**:AirKiss技术不仅适用于智能家居设备,也适用于物联网(IoT)场景中的各种设备,如智能门锁、智能灯泡等,只要有接收AirKiss信息的能力,它们就能快速接入网络,实现远程控制和数据交互。 AirKiss原理是利用先进的无线通讯技术,结合移动设备的便利性,构建了一种无需物理连接的设备网络配置方式,极大地提升了物联网设备的易用性和智能化水平。这种技术在未来智能家居和物联网设备的普及中,有望发挥重要作用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

交叉验证全解析:数据挖掘中的黄金标准与优化策略

![交叉验证全解析:数据挖掘中的黄金标准与优化策略](https://img-blog.csdnimg.cn/img_convert/eff0a03452b18f6b259f99cebef24bd9.png) # 1. 交叉验证的基本概念和重要性 ## 1.1 交叉验证的定义 交叉验证是一种统计方法,用于评估并改进机器学习模型的泛化能力。它通过将数据集分为几个小的“折”(或称为“子集”),然后迭代使用这些数据子集来训练和测试模型,从而得到模型性能的更准确估计。 ## 1.2 交叉验证的重要性 在机器学习过程中,我们通常面临一个重要的问题:模型可能对训练数据过度拟合,而不能很好地推广到新数据
recommend-type

在交换机上创建 VLAN10、VLAN20和VLAN30,将交换机 B 的 2-5 接口加入到 VLAN 10 中 用ensp写出配置命令

在交换机上配置VLAN并分配接口到特定的VLAN中,通常需要登录到交换机的命令行界面。以下是在华为交换机上使用eNSP(Enterprise Network Simulation Platform,企业网络模拟平台)模拟器进行VLAN配置的基本步骤和命令: 首先,进入系统视图: ``` system-view ``` 然后创建VLAN10、VLAN20和VLAN30: ``` vlan 10 vlan 20 vlan 30 ``` 接下来,将交换机B的2到5端口加入到VLAN10中,假设交换机B的接口编号为GigabitEthernet0/0/2至GigabitEthernet0/0/5
recommend-type

Hibernate主键生成策略详解

"Hibernate各种主键生成策略与配置详解" 在关系型数据库中,主键是表中的一个或一组字段,用于唯一标识一条记录。在使用Hibernate进行持久化操作时,主键的生成策略是一个关键的配置,因为它直接影响到数据的插入和管理。以下是Hibernate支持的各种主键生成策略的详细解释: 1. assigned: 这种策略要求开发者在保存对象之前手动设置主键值。Hibernate不参与主键的生成,因此这种方式可以跨数据库,但并不推荐,因为可能导致数据一致性问题。 2. increment: Hibernate会从数据库中获取当前主键的最大值,并在内存中递增生成新的主键。由于这个过程不依赖于数据库的序列或自增特性,它可以跨数据库使用。然而,当多进程并发访问时,可能会出现主键冲突,导致Duplicate entry错误。 3. hilo: Hi-Lo算法是一种优化的增量策略,它在一个较大的范围内生成主键,减少数据库交互。在每个session中,它会从数据库获取一个较大的范围,然后在内存中分配,降低主键碰撞的风险。 4. seqhilo: 类似于hilo,但它使用数据库的序列来获取范围,适合Oracle等支持序列的数据库。 5. sequence: 这个策略依赖于数据库提供的序列,如Oracle、PostgreSQL等,直接使用数据库序列生成主键,保证全局唯一性。 6. identity: 适用于像MySQL这样的数据库,它们支持自动增长的主键。Hibernate在插入记录时让数据库自动为新行生成主键。 7. native: 根据所连接的数据库类型,自动选择最合适的主键生成策略,如identity、sequence或hilo。 8. uuid: 使用UUID算法生成128位的唯一标识符,适用于分布式环境,无需数据库支持。 9. guid: 类似于uuid,但根据不同的实现可能会有所不同,通常在Windows环境下生成的是GUID字符串。 10. foreign: 通过引用另一个表的主键来生成当前表的主键,适用于关联实体的情况。 11. select: 在插入之前,通过执行SQL查询来获取主键值,这种方式需要开发者提供定制的SQL语句。 12. 注释方式配置: 可以通过在Java实体类的@Id和@GeneratedValue注解中指定generator属性来配置自定义的主键生成策略。 13. 小结: Hibernate的主键生成策略选择应基于数据库特性、性能需求以及是否需要跨数据库兼容等因素。在实际应用中,需要根据项目具体需求选择最适合的策略。 注意,合理选择主键生成策略对于数据库性能和数据一致性至关重要。例如,increment策略在多进程环境下可能会出现问题,而sequence和identity策略则更安全,但可能不适合所有数据库系统。因此,开发者应充分理解每种策略的优缺点,并结合实际情况作出决策。