基于bp神经网络的pid自整定仿真研究

时间: 2023-11-16 09:52:09 浏览: 22
摘要:针对传统PID控制器参数调整困难、调整时间长、调整效果不理想的问题,本文提出了一种基于BP神经网络的PID自整定控制算法。该算法将传统PID控制器中的比例、积分、微分三个参数视为输入层的神经元,将PID控制器输出的控制量作为输出层的神经元,通过对训练样本的学习,使得神经网络具有良好的自适应能力,可以根据不同的控制对象及控制要求自动调整PID参数,从而实现对控制系统的自整定。通过MATLAB仿真验证,该算法具有良好的控制性能和鲁棒性,可以应用于多种控制对象的控制系统中。 关键词:BP神经网络;PID控制器;自整定;MATLAB仿真 Abstract: In view of the difficulties in parameter adjustment, long adjustment time and unsatisfactory adjustment effect of traditional PID controller, this paper proposes a PID self-tuning control algorithm based on BP neural network. In this algorithm, the three parameters of proportion, integral and derivative in the traditional PID controller are regarded as the neurons of the input layer, and the control quantity output by the PID controller is regarded as the neurons of the output layer. By learning the training samples, the neural network has good adaptability and can automatically adjust the PID parameters according to different control objects and control requirements, so as to achieve self-tuning of the control system. Through MATLAB simulation verification, the algorithm has good control performance and robustness, and can be applied to control systems of various control objects. Keywords: BP neural network; PID controller; self-tuning; MATLAB simulation.

相关推荐

本文将探讨使用BP神经网络进行PID自整定的仿真研究。首先,我们介绍了PID控制器的基本原理和结构,并讨论了PID控制器的参数自整定问题。然后,我们介绍了BP神经网络的基本原理和结构,并探讨了如何将BP神经网络应用于PID参数自整定。最后,我们进行了仿真实验,以验证使用BP神经网络进行PID自整定的有效性。 PID控制器是一种经典的控制器,它可以通过对系统响应的反馈来调整输出信号,以达到控制系统稳定的目的。PID控制器的参数包括比例系数Kp、积分时间Ti和微分时间Td。这些参数的选择对控制系统的性能有重要影响,因此需要进行参数自整定。 传统的PID参数自整定方法包括试验法、Ziegler-Nichols方法和Chien-Hrones-Reswick方法等。这些方法通常需要进行大量的试验和计算,并且不一定能够得到最优的控制效果。 BP神经网络是一种常见的人工神经网络,它可以通过训练来学习和适应不同的输入输出模式。BP神经网络可以用来建立系统的模型,从而进行参数自整定。 在本文中,我们将使用BP神经网络来进行PID参数自整定。具体来说,我们首先建立一个包含输入信号、输出信号和控制信号的训练数据集。然后,我们使用BP神经网络来对数据集进行训练,并得到一个适合于控制系统的模型。最后,我们使用训练得到的模型来进行PID参数的自整定,并进行仿真实验来验证方法的有效性。 仿真实验结果表明,使用BP神经网络进行PID参数自整定可以显著提高控制系统的性能。与传统的PID参数自整定方法相比,该方法具有更好的鲁棒性和适应性,能够更好地适应不同的控制系统。因此,该方法在实际应用中具有广泛的应用前景。
基于BP神经网络自整定PID控制是一种控制仿真方法,通过借助神经网络算法和PID控制器相结合的方式来实现控制系统的优化。在传统的PID控制中,控制器的参数需要根据实际系统的特性经过人工调整,并且对于不同的系统,可能需要不同的参数设置。而基于BP神经网络自整定PID控制,可以通过神经网络的学习能力和适应性,自动调整控制器的参数,从而实现更加合理和有效的系统控制。 在基于BP神经网络的自整定PID控制中,首先需要构建一个神经网络模型,该模型需要具备逼近非线性动态系统的能力。然后,通过将该模型与PID控制器相连接,并且利用BP神经网络算法进行训练,实现控制器参数的自整定。在训练过程中,通过与实际系统进行对比,不断调整神经网络的权重和阈值,使得控制效果逐渐接近期望值。 通过基于BP神经网络自整定PID控制,可以实现对控制系统的自适应性和鲁棒性的增强。在控制仿真中,可以根据实际的仿真模型,借助神经网络的学习能力和适应性,自动获取最优的控制器参数配置,从而实现更好的控制效果。此外,基于BP神经网络的自整定PID控制还可以适应系统的变化和不确定性,从而提高系统的稳定性和控制性能。 总体来说,基于BP神经网络自整定PID控制仿真是一种有效的控制方法,可以通过神经网络的学习能力和适应性,自动调整PID控制器的参数,从而实现更好的控制效果和系统性能。在实际应用中,可以根据具体的控制需求和系统特性,进行相应的仿真验证和参数调整,以实现更优秀的控制效果。
基于BP神经网络自整定PID控制是一种控制方法,其主要思想是通过BP神经网络对系统进行在线学习,调整PID控制器的参数,以达到更好的控制效果。下面是一个基于BP神经网络自整定PID控制的实验报告: 1. 实验目的 本实验旨在通过BP神经网络自整定PID控制方法,使得控制系统具有较好的控制性能,包括快速响应、较小超调量和较小的稳态误差。 2. 实验原理 BP神经网络是一种反向传播算法,它可以通过训练样本,自动调整神经网络的权值和阈值,从而实现对系统的表示和控制。在BP神经网络自整定PID控制方法中,通过将神经网络作为PID控制器的一部分,将系统的误差作为网络的输入,将控制信号作为网络的输出,通过调整网络的权值和阈值来调整PID控制器的参数。 3. 实验步骤 本实验采用MATLAB进行仿真,在MATLAB中实现基于BP神经网络自整定PID控制的模型,并进行仿真实验。 具体实验步骤如下: (1)建立控制系统模型,包括被控对象、PID控制器、BP神经网络等。 (2)根据实验要求,设置系统的输入信号和输出信号。 (3)进行仿真实验,记录系统的输出响应,并根据实验结果调整PID控制器的参数。 (4)在BP神经网络中添加新的样本,重新训练网络,调整网络的权值和阈值。 (5)重复以上步骤,直到系统达到预期的控制效果。 4. 实验结果与分析 通过本实验,我们成功地实现了基于BP神经网络自整定PID控制的控制系统,并且得到了较好的控制效果。实验结果显示,该控制方法具有快速响应、较小超调量和较小的稳态误差等优点,能够应用于各种不同的控制系统中。 5. 总结 本实验主要介绍了基于BP神经网络自整定PID控制方法,在MATLAB中进行了仿真实验,并取得了良好的控制效果。该方法具有一定的理论意义和实际应用价值,可以为工程控制领域的研究和应用提供一定的参考。
### 回答1: 基于s函数的bp神经网络pid控制器是一种控制器,它使用了bp神经网络和pid控制算法来实现对系统的控制。在Simulink中,可以使用s函数来实现这种控制器,并进行仿真。通过仿真可以验证控制器的性能和稳定性,以及优化控制参数。 ### 回答2: BP神经网络是一种常用的人工神经网络,广泛应用于控制、分类、映射等领域。PID控制器是一种常用的控制器,具有简单、稳定、易实现等优点。将BP神经网络与PID控制器结合起来,可得到BP神经网络PID控制器,该控制器不仅具有PID控制器的优点,还能通过神经网络学习调整自身的权重和偏置,实现更加精准的控制。 在实现BP神经网络PID控制器之前,需先建立神经网络模型。以单输入单输出为例,设控制目标为y,控制器输出为u,则输入为e=y-d,其中d为设定值。神经网络的每一层包括若干个神经元,每个神经元都有一个输入、一个输出和一组权重。假设BP神经网络包括输入层、隐层和输出层,则神经元的输入可以表示为: $net_j=\sum_{i=1}^nx_iw_{ij}+b_j$ 其中,$x_i$为输入数据,$w_{ij}$为连接第$i$个输入与第$j$个神经元的权重,$b_j$为第$j$个神经元的偏置。 由此,神经元的输出可以表示为: $y_j=f(net_j)$ 其中,f()为激活函数,常用的激活函数包括Sigmoid函数、ReLU函数等,本例中采用Sigmoid函数。 以PID控制器为例,可将该控制器的输出表示为: $u(t)=K_pe(t)+K_i\int_0^te(\tau)d\tau+K_d\frac{de(t)}{dt}$ 将上式的$e(t)$替换为上述的输入形式,可得到神经网络PID控制器的输出表示式: $u(t)=K_p\cdot net_o+K_i\cdot\sum_{i=1}^t net_o+K_d\cdot\frac{dnet_o}{dt}$ 其中,$net_o$为输出神经元的加权总和。 通过神经网络的训练,可以得到网络中各层的权重和偏置。一般采用误差反向传播算法(Backpropagation,BP算法)进行训练,具体步骤为:给定输入数据,计算网络输出;计算误差,并将误差反向传递到网络中;利用误差修正神经元的权重和偏置;重复以上步骤,直至达到预期的训练效果。 为验证BP神经网络PID控制器的性能,可以使用Simulink进行仿真。在Simulink中,可用PID Controller模块搭建PID控制器模型,并使用S Function模块集成BP神经网络模型。具体步骤为:将S Function模块与PID Controller模块连接,将模型的输入和输出分别指向S Function模块的输入端口和输出端口;在S Function模块中编写BP神经网络模型的代码,并在其中调用MATLAB Neural Network Toolbox提供的函数进行训练和预测。 通过Simulink仿真,可以得到BP神经网络PID控制器的控制效果,包括控制精度、响应速度和稳定性等指标。通过调整神经网络模型的结构和训练参数,可以进一步优化控制效果。 ### 回答3: 基于s函数的bp神经网络pid控制器是一种高级的控制器,它结合了神经网络和pid控制的优点,能够在复杂的控制系统中实现更加精准的控制效果。 首先,我们需要了解什么是bp神经网络和pid控制。BP神经网络是一种前馈神经网络,它可以用来处理非线性的输入输出关系。PID控制器是一种比例、积分、微分控制的算法,用于调节系统的输出与设定值的差异。 对于基于s函数的bp神经网络pid控制器,它通过使用神经网络的非线性特性来计算控制输入,而PID控制器则对方程中的误差进行修正和控制。此外,通过使用自适应学习算法,bp神经网络pid控制器可以实现自动调节参数,从而适应系统变化和噪声干扰。 在Simulink中进行仿真实验时,我们需要首先搭建一个基于s函数的bp神经网络pid控制器模型。该模型包括输入、输出、神经网络、PID控制和反馈环节。然后,我们可以使用不同的仿真场景来测试控制器的性能。 总之,基于s函数的bp神经网络pid控制器是一种可行的高级控制器,它融合了神经网络和PID控制的优点,可以大大提高控制系统的性能和稳定性。在Simulink中进行仿真实验时,我们可以通过不同的参数设置和仿真场景来探究其性能和特点,为实际控制系统的应用提供更加精准的控制策略。
### 回答1: BP神经网络PID控制器是一种利用人工神经网络的反向传播算法来实现自适应控制的方法。对于高阶系统的仿真,BP神经网络PID控制器可以提供更好的性能和适应性。 首先,BP神经网络PID控制器可以处理高阶系统的非线性关系。传统的PID控制器对于高阶系统的非线性关系很难建模和处理,而神经网络可以通过学习样本数据来学习系统的非线性特性,并根据实时反馈来调整控制策略,提供更准确的控制效果。 其次,BP神经网络PID控制器可以自适应地调整参数。传统的PID控制器需要手动调整参数,对于复杂的高阶系统往往需要耗费大量的时间和经验来找到合适的参数。而神经网络可以根据实际系统状态和控制误差不断优化参数值,并利用反向传播算法使得控制器的性能逐渐接近最优值。 此外,BP神经网络PID控制器还可以应对高阶系统的不确定性。高阶系统往往存在各种噪声和干扰,而神经网络具有较强的鲁棒性和抗干扰能力。通过学习样本数据和实时反馈,神经网络可以对系统的不确定性进行建模和补偿,提高控制器的稳定性和鲁棒性。 总结来说,BP神经网络PID控制器在高阶系统的仿真中具有较好的性能和适应性。它可以处理非线性关系、自适应调整参数,并且具有良好的鲁棒性,能够应对复杂的高阶系统,并提供准确的控制效果。 ### 回答2: BP神经网络PID控制器是一种使用神经网络来代替传统PID控制器的控制方法。高阶系统指的是具有较复杂动态特性和非线性特性的系统。 BP神经网络PID控制器通过神经网络的学习能力,能够对高阶系统进行仿真和控制。首先,我们需要将高阶系统的输入与输出数据作为BP神经网络的训练数据,通过训练来学习系统的动态特性。在训练过程中,BP神经网络通过调整其权值和偏置,来拟合系统的输入输出关系。这样,经过训练后的BP神经网络就能够模拟和预测高阶系统的响应。 接下来,我们可以将训练好的BP神经网络与PID控制器结合起来,形成BP神经网络PID控制器。该控制器可以使用BP神经网络来估计系统的状态和动态特性,根据估计的信息进行控制器的调节,生成控制信号,对系统进行控制。与传统PID控制器相比,BP神经网络PID控制器具有更好的适应性和鲁棒性,能够在复杂的高阶系统中实现更精确的控制。 总的来说,BP神经网络PID控制器对于高阶系统的仿真是通过利用神经网络的学习能力来模拟和预测系统的动态特性,然后结合PID控制器进行控制。这种控制器能够更好地适应高阶系统的非线性特性,实现精确的控制。 ### 回答3: BP神经网络是一种基于反向传播算法的人工神经网络方法,可以用于控制系统中的PID控制器。PID控制器是一种常见的控制策略,可以用于高阶系统的控制。 在高阶系统中,BP神经网络PID控制器的仿真可以通过以下步骤来实现: 1. 确定系统的数学模型:首先,需要确定高阶系统的数学模型。通过对系统的物理特性和动力学方程进行建模,可以得到系统的数学描述。 2. 设计BP神经网络:根据高阶系统的数学模型和控制要求,设计BP神经网络。BP神经网络的输入通常包括系统的状态变量和参考信号等,输出为控制器的输出。 3. 训练神经网络:使用已知的系统输入和输出数据对神经网络进行训练。训练的目标是使神经网络能够准确地预测系统的输出,并且使控制误差最小化。 4. 调整控制参数:通过调整PID控制器的参数,使系统的响应满足控制要求。根据神经网络的输出,可以自适应地调整PID控制器的参数,以提高控制性能。 5. 仿真验证:使用训练好的BP神经网络PID控制器对高阶系统进行仿真。将系统的输入作为神经网络的输入,得到控制器的输出作为系统的控制信号,然后观察系统的响应情况。 通过以上步骤,可以对高阶系统的控制进行仿真。BP神经网络PID控制器具有非线性映射能力和自适应性,可以在复杂的系统中提供良好的控制性能。同时,BP神经网络PID控制器可以通过训练和参数调整来适应不同的系统和控制要求,具有较强的鲁棒性和智能性。
神经网络PID控制器是近年来比较热门的一种控制方法,它可以利用神经网络的非线性映射能力解决传统PID控制器难以解决的非线性、时变等问题。本篇将介绍如何使用MATLAB和Simulink搭建BP神经网络PID控制器的仿真模型。 1. BP神经网络的训练 首先,需要对BP神经网络进行训练。在MATLAB中,可以使用“newff”函数创建一个2-3-1的BP神经网络,其中输入层有两个神经元,隐层有三个神经元,输出层有一个神经元。代码如下: matlab net=newff(minmax(input),[3,1],{'logsig','purelin'},'trainlm'); 其中,“minmax(input)”是将输入数据归一化到[-1,1]之间,[3,1]表示神经网络的拓扑结构,‘logsig’和‘purelin’分别是隐层和输出层的激活函数,‘trainlm’是训练算法。 接着,需要准备训练数据和目标数据。在这里,我们以一个简单的一阶惯性环节为例,准备训练数据和目标数据: matlab t=0:0.01:10; y=zeros(1,length(t)); y(1)=0; for i=2:length(t) y(i)=0.9*y(i-1)+0.1*randn; end u=randn(1,length(t)); input=[y;u]; output=y; 其中,“y”表示系统的输出,初始值为0,“u”表示系统的输入,是一个白噪声信号,input和output分别表示输入数据和目标数据。 然后,可以使用“train”函数进行BP神经网络的训练: matlab net=train(net,input,output); 训练完成后,可以使用“sim”函数进行仿真验证: matlab y_pred=sim(net,input); 2. BP神经网络PID控制器的搭建 接下来,可以使用Simulink搭建BP神经网络PID控制器的仿真模型。首先,需要在“Simulink Library Browser”中找到“Neural Network Toolbox”并打开,然后从中选择“BP Neural Network”。 将“BP Neural Network”模块拖入仿真模型中,双击打开该模块设置窗口。在这里,需要选择之前训练好的BP神经网络模型,并将输入和输出端口连接到系统的输入和输出信号上。 接着,需要添加一个PID控制器模块,在“Simulink Library Browser”中找到“Control System Toolbox”并打开,然后从中选择“PID Controller”。 将“PID Controller”模块拖入仿真模型中,并将其与BP神经网络模块连接。在“PID Controller”模块的设置窗口中,需要设置PID参数。 最后,将系统的输入信号连接到PID控制器的输入端口,将PID控制器的输出信号连接到BP神经网络模块的输入端口,将BP神经网络模块的输出信号连接到系统的输出信号上。 3. BP神经网络PID控制器的仿真 完成以上步骤后,即可运行仿真模型进行验证。可以通过改变PID参数和BP神经网络的拓扑结构对控制效果进行优化。 以上就是使用MATLAB和Simulink搭建BP神经网络PID控制器的仿真模型的教程。

最新推荐

Java毕业设计--SpringBoot+Vue的乐校园二手书交易管理系统(附源码,数据库,教程).zip

Java 毕业设计,Java 课程设计,基于 SpringBoot+Vue 开发的,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行! 1. 技术组成 前端:html、javascript、Vue 后台框架:SpringBoot 开发环境:idea 数据库:MySql(建议用 5.7 版本,8.0 有时候会有坑) 数据库工具:navicat 部署环境:Tomcat(建议用 7.x 或者 8.x 版本), maven 2. 部署 如果部署有疑问的话,可以找我咨询 后台路径地址:localhost:8080/项目名称/admin/dist/index.html 前台路径地址:localhost:8080/项目名称/front/index.html (无前台不需要输入)

基于matlab和opencv的手写数字及字母识别系统源码.zip

【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于matlab和opencv的手写数字及字母识别系统源码.zip

用MATLAB手势识别系统matlab程序.zip

用MATLAB手势识别系统matlab程序.zip

用MATLAB车牌出入库计费系统matlab程序.zip

用MATLAB车牌出入库计费系统matlab程序.zip

输入输出方法及常用的接口电路资料PPT学习教案.pptx

输入输出方法及常用的接口电路资料PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Office 365常规运维操作简介

# 1. Office 365概述 ## 1.1 Office 365简介 Office 365是由微软提供的云端应用服务,为用户提供办公软件和生产力工具的订阅服务。用户可以通过互联网在任何设备上使用Office应用程序,并享受文件存储、邮件服务、在线会议等功能。 ## 1.2 Office 365的优势 - **灵活性**:用户可以根据实际需求选择不同的订阅计划,灵活扩展或缩减服务。 - **便捷性**:无需安装繁琐的软件,随时随地通过互联网访问Office应用程序和文件。 - **协作性**:多人可同时编辑文档、实时共享文件,提高团队协作效率。 - **安全性**:微软提供安全可靠

如何查看linux上安装的mysql的账号和密码

你可以通过以下步骤查看 Linux 上安装的 MySQL 的账号和密码: 1. 进入 MySQL 安装目录,一般是 /usr/local/mysql/bin。 2. 使用以下命令登录 MySQL: ``` ./mysql -u root -p ``` 其中,-u 表示要使用的用户名,这里使用的是 root;-p 表示需要输入密码才能登录。 3. 输入密码并登录。 4. 进入 MySQL 的信息库(mysql): ``` use mysql; ``` 5. 查看 MySQL 中的用户表(user): ``` se

最新电力电容器及其配套设备行业安全生产设备设施及隐患排查治理.docx

2021年 各行业安全生产教育培训

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依