pix2pix伪代码
时间: 2023-07-02 19:18:34 浏览: 226
以下是Pix2Pix的伪代码:
```
# 定义输入图像和目标图像
input_images = ...
target_images = ...
# 定义生成器和判别器的网络结构
generator = ...
discriminator = ...
# 定义优化器和损失函数
optimizer_G = ...
optimizer_D = ...
criterion_GAN = ...
criterion_L1 = ...
# 训练生成器和判别器
for epoch in range(num_epochs):
for i, (input_image, target_image) in enumerate(zip(input_images, target_images)):
# 训练判别器
optimizer_D.zero_grad()
fake_target = generator(input_image)
real_loss_D = criterion_GAN(discriminator(input_image, target_image), True)
fake_loss_D = criterion_GAN(discriminator(input_image, fake_target.detach()), False)
loss_D = (real_loss_D + fake_loss_D) / 2
loss_D.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
fake_target = generator(input_image)
loss_GAN_G = criterion_GAN(discriminator(input_image, fake_target), True)
loss_L1 = criterion_L1(fake_target, target_image)
loss_G = loss_GAN_G + lambda_L1 * loss_L1
loss_G.backward()
optimizer_G.step()
```
其中,`generator` 是生成目标图像的生成器网络,`discriminator` 是对输入图像和目标图像进行判别的判别器网络。`criterion_GAN` 是对抗损失函数,`criterion_L1` 是L1损失函数。在训练过程中,首先训练判别器,然后训练生成器,其中损失函数包括对抗损失和L1损失。
阅读全文