from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,confusion_matrix import numpy as np # 导入iris数据集 iris = load_iris() # 提取数据集中的特征数据 X = iris.data # 提取label y = iris.target # 划分训练集和测试集 X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=42,test_size=0.5,stratify=y) # 导入决策树,设置参数,最大深度为3,使用gini系数 tree = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42) # 拟合训练集 tree.fit(X_train,y_train) # 预测测试集 y_predict = tree.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test,y_predict) # 混淆矩阵 cm = confusion_matrix(y_test,y_predict) TP = np.diag(cm) FN = cm.sum(axis=1) - np.diag(cm) FP = cm.sum(axis=0) - np.diag(cm) TN = cm.sum() - (TP+FN+FP) recall = TP / (TP+FN) # Overall Accuracy OA = (TP+TN) / (TP+FN+FP+TN) print(OA) # Average Accuracy AA = recall.sum() / len(recall) print(AA)逐句详细分析一下

时间: 2024-02-27 22:51:59 浏览: 28
这段代码使用决策树算法对鸢尾花数据集进行训练和分类测试,并计算了准确率、混淆矩阵、召回率和平均准确率等指标。 具体的逐句分析如下: 1. 导入需要的库 ``` from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score,confusion_matrix import numpy as np ``` 首先导入需要的库,包括数据集iris、决策树分类器、数据集划分、准确率和混淆矩阵的计算库,以及Numpy库。 2. 加载数据集 ``` iris = load_iris() X = iris.data y = iris.target ``` 使用load_iris()函数加载iris数据集,并将特征数据和标签分别赋值给X和y。 3. 划分训练集和测试集 ``` X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=42,test_size=0.5,stratify=y) ``` 使用train_test_split()函数将数据集划分为训练集和测试集。其中,random_state=42表示随机种子为42,test_size=0.5表示测试集占总样本的50%,stratify=y表示按照标签y进行分层抽样,以保证训练集和测试集中的类别比例相同。 4. 定义决策树分类器 ``` tree = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=42) ``` 使用DecisionTreeClassifier()函数定义决策树分类器,其中criterion='gini'表示使用Gini系数作为划分标准,max_depth=3表示决策树的最大深度为3,random_state=42表示随机种子为42。 5. 训练模型 ``` tree.fit(X_train,y_train) ``` 使用fit()函数对训练集进行拟合,以训练决策树模型。 6. 对测试集进行预测 ``` y_predict = tree.predict(X_test) ``` 使用predict()函数对测试集进行预测,得到预测结果y_predict。 7. 计算准确率和混淆矩阵 ``` accuracy = accuracy_score(y_test,y_predict) cm = confusion_matrix(y_test,y_predict) ``` 使用accuracy_score()函数计算准确率,使用confusion_matrix()函数计算混淆矩阵。 8. 计算召回率和平均准确率 ``` TP = np.diag(cm) FN = cm.sum(axis=1) - np.diag(cm) FP = cm.sum(axis=0) - np.diag(cm) TN = cm.sum() - (TP+FN+FP) recall = TP / (TP+FN) OA = (TP+TN) / (TP+FN+FP+TN) AA = recall.sum() / len(recall) print(OA) print(AA) ``` 根据混淆矩阵计算True Positive(TP)、False Negative(FN)、False Positive(FP)和True Negative(TN),以计算召回率(recall)和平均准确率(AA)。其中,召回率表示正确预测的样本数占总样本数的比例,平均准确率表示召回率的平均值。最后,打印输出OA和AA的值。

相关推荐

解释下列代码作用:from sklearn import datasets import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # 加载莺尾花数据集 iris = datasets.load_iris() # 获取特征数据 data = iris.data # 获取分类标签 target = iris.target # 获取分类标签名称 target_names = iris.target_names # 打印数据形状 print("data shape: ", data.shape) print("target shape: ", target.shape) # 打印分类标签名称 print("target names: ", target_names) # 获取第一条数据的特征数据和分类标签 s = data[0] d = target[0] print("data数组: ", s) print("target数组: ", d) # 取出特征和标签数据 x = iris.data y = iris.target # 绘制二维散点图 plt.scatter(x[:, 0], x[:, 1], c=y) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() plt.scatter(data[target == 0, 2], data[target == 0, 3], color='blue') plt.scatter(data[target == 1, 2], data[target == 1, 3], color='orange') plt.scatter(data[target == 2, 2], data[target == 2, 3], color='green') plt.show() # 绘制三维散点图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y) ax.set_xlabel('Sepal length') ax.set_ylabel('Sepal width') ax.set_zlabel('Petal length') plt.show() # 将数据集拆分为培训和测试数据集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) # 根据问题(分类或回归)选择算法(决策树算法) clf = DecisionTreeClassifier(criterion='gini') # 将训练数据集传递给算法进行训练 clf.fit(x_train, y_train) # 将测试数据传递给经过训练的算法,以预测结果 y_pred = clf.predict(x_test) # 比较预测结果和真实值,给出算法准确性 accuracy = accuracy_score(y_test, y_pred) print("准确性: {:.2f}%".format(accuracy * 100))

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依