$('#cssfile').attr('href','css/'+this.id+'.css');
时间: 2023-10-08 14:09:17 浏览: 182
这段代码的作用是根据点击的元素的id值来改变页面中一个id为cssfile的link标签的href属性,从而改变网页的CSS样式文件。具体来说,该代码将cssfile的href属性设置为'css/'+this.id+'.css',其中this.id表示当前点击元素的id值。比如,如果点击的元素的id值为"blue",那么该代码将会把cssfile的href属性设置为"css/blue.css",从而改变网页的CSS样式。
相关问题
用python实现scrapy框架的爬虫,将数据存在桌面的csv格式并存入mysql数据库。 初始页面为https://lishi.tianqi.com/beijing/index.html, 点击“选择月份”为8、9、10后分别跳转到https://lishi.tianqi.com/beijing/202208.html,https://lishi.tianqi.com/beijing/202209.html,https://lishi.tianqi.com/beijing/202210.html, 在scrapy中实现自动翻页效果
好的,这是一个比较完整的爬虫项目,需要考虑很多方面。下面是一个大致的思路:
1. 创建一个 Scrapy 项目,定义好 Item 和 Spider。
2. 在 Spider 中定义初始页面和翻页的规则。首先要爬取的是 https://lishi.tianqi.com/beijing/index.html 这个页面,然后在该页面中找到“选择月份”的链接,用它来构造翻页规则,例如:
```python
start_urls = ["https://lishi.tianqi.com/beijing/index.html"]
def parse(self, response):
# 获取“选择月份”的链接
month_links = response.css('.tqtongji2 .tqmonth a::attr(href)').getall()
for link in month_links:
yield scrapy.Request(url=link, callback=self.parse_month_page)
```
在 `parse_month_page` 方法中,可以解析每个月份的页面,并把数据存入 CSV 文件和 MySQL 数据库中。
3. 在 Item 中定义需要爬取的数据字段,例如日期、温度、气压、风力等:
```python
class WeatherItem(scrapy.Item):
date = scrapy.Field()
temperature = scrapy.Field()
pressure = scrapy.Field()
wind = scrapy.Field()
```
4. 在 Spider 中解析每个月份的页面,获取数据并存入 CSV 文件和 MySQL 数据库中。首先要找到每个月份页面中的天气数据表格,然后循环解析每一行数据:
```python
def parse_month_page(self, response):
# 找到天气数据表格
table = response.css('.tqtongji1 table')[1]
rows = table.css('tr')
for row in rows[1:]:
# 解析每一行数据
item = WeatherItem()
item['date'] = row.css('td:nth-child(1)::text').get()
item['temperature'] = row.css('td:nth-child(2)::text').get()
item['pressure'] = row.css('td:nth-child(3)::text').get()
item['wind'] = row.css('td:nth-child(4)::text').get()
yield item
```
5. 在 Spider 中定义数据存储管道,将数据存入 CSV 文件和 MySQL 数据库中:
```python
class WeatherPipeline:
def open_spider(self, spider):
self.file = open('weather.csv', 'w', encoding='utf-8', newline='')
self.writer = csv.writer(self.file)
self.writer.writerow(['日期', '温度', '气压', '风力'])
self.conn = pymysql.connect(host='localhost', user='root', password='123456', db='test', charset='utf8')
self.cursor = self.conn.cursor()
def close_spider(self, spider):
self.file.close()
self.conn.close()
def process_item(self, item, spider):
# 写入 CSV 文件
self.writer.writerow([item['date'], item['temperature'], item['pressure'], item['wind']])
# 存入 MySQL 数据库
sql = "INSERT INTO weather(date, temperature, pressure, wind) VALUES (%s, %s, %s, %s)"
values = (item['date'], item['temperature'], item['pressure'], item['wind'])
self.cursor.execute(sql, values)
self.conn.commit()
return item
```
6. 在 Spider 中定义翻页的规则。根据“选择月份”的链接构造出每个月份页面的 URL,例如 https://lishi.tianqi.com/beijing/202208.html,https://lishi.tianqi.com/beijing/202209.html,https://lishi.tianqi.com/beijing/202210.html 等等,可以使用 `scrapy.Request` 方法来构造请求:
```python
def parse(self, response):
# 获取“选择月份”的链接
month_links = response.css('.tqtongji2 .tqmonth a::attr(href)').getall()
for link in month_links:
# 构造每个月份页面的 URL
url = response.urljoin(link.replace('.html', ''))
for i in range(1, 32):
# 构造每一天的 URL
day_url = url + f'{i:02d}.html'
yield scrapy.Request(url=day_url, callback=self.parse_day_page)
```
在 `parse_day_page` 方法中,可以解析每一天的页面,并把数据存入 CSV 文件和 MySQL 数据库中。
以上就是一个大致的思路,具体的实现细节还需要根据实际情况进行调整。
import requests import random import parsel visited_urls = set() # 保存已经访问过的链接 page = 1 while True: # 循环爬取 url = f'https://travel.qunar.com/travelbook/list.htm?page={page}&order=hot_heat' html_data = requests.get(url).text selector = parsel.Selector(html_data) lis = selector.css('.list_item h2 a::attr(href)').getall() # 遍历当前页面中的所有链接 for li in lis: detail_url = 'https://travel.qunar.com' + li if detail_url in visited_urls: # 如果链接已经访问过,则跳过 continue visited_urls.add(detail_url) # 将链接加入集合中 detail_html = requests.get(detail_url).text time.sleep(random.randint(3, 5)) detail_selector = parsel.Selector(detail_html) title = detail_selector.css('.b_crumb_cont *:nth-child(3)::text').get() comment = detail_selector.css('.title.white::text').get() view_count = detail_selector.css('.view_count::text').get() date = detail_selector.css('#js_mainleft > div.b_foreword > ul > li.f_item.when > p > span.data::text').get() days = detail_selector.css('#js_mainleft > div.b_foreword > ul > li.f_item.howlong > p > span.data::text').get() money = detail_selector.css('#js_mainleft > div.b_foreword > ul > li.f_item.howmuch > p > span.data::text').get() character = detail_selector.css('#js_mainleft > div.b_foreword > ul > li.f_item.who > p > span.data::text').get() play_list = detail_selector.css('#js_mainleft > div.b_foreword > ul > li.f_item.how > p > span.data > span::text').getall() for play in play_list: print(play) print(title, comment, view_count, date, days, money, character, play_list, detail_url) time.sleep(random.randint(3, 5)) # 判断是否需要继续爬取 if len(lis) == 0 or page >= 20: break page += 1这段代码怎么将爬取出来的所有数据保存到csv文件
可以使用Python内置的csv库将数据保存到csv文件中。你需要先导入csv库,然后在代码中添加以下代码:
```python
import csv
# 将数据保存到csv文件中
with open('data.csv', mode='w', newline='') as csv_file:
fieldnames = ['title', 'comment', 'view_count', 'date', 'days', 'money', 'character', 'play_list', 'detail_url']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for data in all_data:
writer.writerow(data)
```
其中,`fieldnames`是csv文件中的每一列的标题,`all_data`是一个列表,包含了所有爬取到的数据。在循环中,我们将每一条数据写入csv文件中。最后通过`writerow`方法将数据写入csv文件。保存后,你可以在当前目录下找到`data.csv`文件。
阅读全文