class Age_Model(): def __init__(self): self.model = self.loadModel() self.output_indexes = np.array([i for i in range(0, 101)]) def predict_age(self,face_image): image_preprocesing = self.transform_face_array2age_face(face_image) age_predictions = self.model.predict(image_preprocesing )[0,:] result_age = self.findApparentAge(age_predictions) return result_age def loadModel(self): model = VGGFace.baseModel() #-------------------------- classes = 101#101 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation('softmax')(base_model_output) #-------------------------- age_model = Model(inputs=model.input, outputs=base_model_output) #-------------------------- home = str(Path.home()) age_model.load_weights(home+'/.deepface/weights/age_model_weights.h5') return age_model
时间: 2023-10-06 20:10:54 浏览: 92
这段代码是一个基于VGGFace模型的年龄预测模型。其中,loadModel函数用于加载预训练的模型权重;predict_age函数用于对输入的人脸图像进行预测,返回预测结果的年龄。
具体来说,该模型使用VGGFace模型作为基础模型。在VGGFace模型上,我们添加了一个具有101个输出类别的全连接层,用于预测101个年龄区间。具体的输出层添加代码为:
```
base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output)
base_model_output = Flatten()(base_model_output)
base_model_output = Activation('softmax')(base_model_output)
```
在预测时,输入的人脸图像经过预处理之后,通过该模型进行预测,得到101个年龄区间的预测概率。最终,根据预测概率的分布,计算出预测的年龄值。
阅读全文