function bit get_next_disparity(bit [9:0] code, bit current_disparity); //function void get_next_disparity(bit [9:0] code, ref bit current_disparity); int count_ones=0; bit disparity_6b, disparity_4b; bit disp_error = 0; for(int k =0; k<6; k++) if(code[k+4] == 1) count_ones++; if((count_ones == 3 && code[9:4] == 6'b000111) || count_ones > 3) begin disparity_6b = 1; if ( (disparity_6b == current_disparity) && (count_ones > 3)) begin disp_error = 1; end if ( (disparity_6b != current_disparity) && (count_ones == 3 && code[9:4] == 6'b000111)) begin disp_error = 1; end end else if(count_ones < 3 || (count_ones == 3 && code[9:4] == 6'b111000)) begin disparity_6b = 0; if ((disparity_6b == current_disparity) && (count_ones < 3) ) begin disp_error = 1; end if ((disparity_6b != current_disparity) && (count_ones == 3 && code[9:4] == 6'b111000) ) begin disp_error = 1; end end else disparity_6b = current_disparity; count_ones = 0; for(int k=0; k<4; k++) if(code[k] == 1) count_ones++; if((count_ones == 2 && code[3:0] == 6'b0011) || count_ones > 2) begin disparity_4b = 1; if ((disparity_6b == disparity_4b) && (count_ones > 2)) begin disp_error = 1; end if ((disparity_6b != disparity_4b) && (count_ones == 2 && code[3:0] == 6'b0011)) begin disp_error = 1; end end else if(count_ones < 2 || (count_ones == 2 && code[3:0] == 6'b1100)) begin disparity_4b = 0; if ((disparity_6b == disparity_4b) && (count_ones < 2) ) begin disp_error = 1; end if ((disparity_6b != disparity_4b) && (count_ones == 2 && code[3:0] == 6'b1100) ) begin disp_error = 1; end end else disparity_4b = disparity_6b; return {disp_error, disparity_4b}; //current_disparity = disparity_4b; endfunction : get_next_disparity

时间: 2024-04-27 07:23:58 浏览: 140
这是一个Verilog中的函数,用于计算码的奇偶校验位。它接受一个10位的二进制码和当前的奇偶校验位作为输入,输出下一个奇偶校验位和校验错误标志。 该函数首先计算6位和4位的1的个数,并根据特定的规则确定下一个奇偶校验位。如果当前奇偶校验位与下一个奇偶校验位不同,或者1的个数不符合特定的规则,那么将设置校验错误标志。 请注意,函数中的注释表明可以通过引用来传递当前奇偶校验位,但是该代码中并没有使用该方法。
相关问题

def normalize(volume, maxdisparity): return 255.0 * volume / maxdisparity def select_disparity(aggregation_volume): volume = np.sum(aggregation_volume, axis=3) disparity_map = np.argmin(volume, axis=2) return disparity_map啥意思

这段代码是用于视差估计(Stereo Matching)中的聚合过程中的后处理步骤。其中: - `normalize(volume, maxdisparity)` 函数将聚合体积中的数值归一化到 [0, 255] 范围内,以便最后输出视差图像。 - `select_disparity(aggregation_volume)` 函数则是用于从聚合体积中找到最佳的视差值。聚合体积中的每个元素代表了在不同的视差值下,对应像素点的匹配程度得分。因此,将每个视差下的得分加和,即可得到一个二维的热图。最后,从这个热图中找到每个像素点得分最小的那个视差值,即为该像素点的视差值。这个过程可以用 `np.sum()` 和 `np.argmin()` 函数实现。

解释def NCC(img1,img2,avg_img1,avg_img2,disparity,NCC_value,deeps, threshold,max_d, min_rows, max_rows): #设立阈值 ncc_value = threshold if min_rows == 0: min_rows += 1 for i in range(3, max_rows - 3): for j in range(3, cols-3): if j < cols - max_d-3: max_d1 = max_d else: max_d1 = cols - j - 3 for d in range(4, max_d1):#减一防止越界 ncc1 = 0 ncc2 = 0 ncc3 = 0 for m in range(i-3, i+4): for n in range(j-3, j+4): ncc1 += (img2[m, n] - avg_img2[i, j])*(img1[m, n+d]-avg_img1[i, j+d]) ncc2 += (img2[m, n] - avg_img2[i, j])*(img2[m, n] - avg_img2[i, j]) ncc3 += (img1[m, n+d]-avg_img1[i, j+d])*(img1[m, n+d]-avg_img1[i, j+d]) ncc_b = math.sqrt(ncc2*ncc3) ncc_p_d = 0 if ncc_b != 0: ncc_p_d = ncc1/(ncc_b) if ncc_p_d > ncc_value: ncc_value = ncc_p_d disparity[i, j] = d NCC_value[i ,j] = ncc_p_d ncc_value = threshold print("iter{0}".format(i))

这段代码是一个用于计算图像间归一化互相关系数(Normalized Cross-Correlation Coefficient,NCC)的函数。函数的输入参数包括两张图像(`img1`和`img2`)、图像的平均值(`avg_img1`和`avg_img2`)、视差图(`disparity`)、NCC值(`NCC_value`)、迭代深度(`deeps`)、阈值(`threshold`)、最大视差值(`max_d`)、最小行数(`min_rows`)和最大行数(`max_rows`)。 函数通过嵌套的循环遍历每个像素点,计算其NCC值。首先,根据条件判断,确定最大视差值(`max_d1`)。然后,在视差范围内,通过两层嵌套的循环遍历一个7x7的窗口,分别计算互相关系数的三个分子项(`ncc1`、`ncc2`和`ncc3`)。接下来,计算归一化互相关系数的分母项,并进行平方根运算得到 `ncc_b`。然后,通过除法计算归一化互相关系数 `ncc_p_d`。如果 `ncc_p_d` 大于阈值 `ncc_value`,则更新最大的 `ncc_p_d` 值、视差图和NCC值。最后,将阈值重置为初始值。 函数的输出是更新后的视差图和NCC值。在循环的每次迭代中,会打印出当前的迭代次数。 请注意,这只是代码片段的一部分,可能还有其他相关的代码在外部定义。
阅读全文

相关推荐

最新推荐

recommend-type

halcon中三维重建相关算子介绍

* `binocular_disparity`:通过互相关系计算两个图形的双目视觉差。 * `binocular_disparity_mg`:通过多格子方法计算两个图形的双目视觉差。 * `binocular_disparity_ms`:利用多扫描线优化方法计算校正后的立体...
recommend-type

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

Linux C开发中,如何判断open()函数创建的fd没有被close()

在Linux C开发中,判断`open()`函数创建的文件描述符(file descriptor, fd)是否已经被`close()`通常涉及到检查该fd是否处于有效的状态。你可以通过以下几个步骤进行: 1. **检查fd是否为-1**:如果fd值为-1,这通常表示错误发生或者文件操作已经完成,它可能已经被关闭。 ```c if (fd == -1) { // 处理失败或已关闭的情况 } ``` 2. **检查errno**:系统调用返回-1并设置errno时,可以查阅相关的错误码来判断问题。比如,`ENOTTY`可能表示尝试访问非块设备,而这可能是由`close()`造成的。