# 定义数据集路径 data_dir = '/path/to/dataset' def extract_features(file_path): # 读取音频文件 signal, sr = librosa.load(file_path, sr=22050) file_path = "D:/360se6/bishe/古筝/gz1.wav" # 提取MFCC特征 mfccs = librosa.feature.mfcc(signal, sr=sr, n_mfcc=13) mfccs = np.mean(mfccs.T, axis=0) return mfccs # 加载数据集 data = pd.read_csv(os.path.join(data_dir, 'data.csv')) 这段代码中如何加载数据集
时间: 2024-03-04 11:49:39 浏览: 77
# Synthetic_Chinese_String_Dataset 中文识别数据集 6 for https:/
这段代码中使用了 pandas 库中的 read_csv() 方法读取名为 'data.csv' 的 CSV 文件,并将其存储在名为 data 的 pandas DataFrame 中。其中 os.path.join() 方法用于连接文件路径,data_dir 是指数据集所在的文件夹路径,'data.csv' 是指数据集的文件名。
读取数据集的代码示例:
```python
import pandas as pd
import os
# 定义数据集路径
data_dir = '/path/to/dataset'
# 加载数据集
data = pd.read_csv(os.path.join(data_dir, 'data.csv'))
# 查看数据集的前几行
print(data.head())
```
其中,'/path/to/dataset' 是指数据集所在的文件夹路径,'data.csv' 是指数据集的文件名。读取数据集后,可以使用 pandas DataFrame 中的方法对数据进行处理、分析和可视化等操作。
阅读全文