设计一个扩张卷积模块,具体过程为首先使用1×1DWConv压缩通道,然后使用大小分别为5×5、7×7、9×9的DWConv和由它们构造的不同膨胀速率的扩张卷积形成多个平行分支,膨胀率分别为5、7、9。此外,还有一个残差连接分支。最后,将这些并行分支的输出拼接在一起后输出一个1×1DWConv,最后形成特征图y,请按照上述要求编写出可以应用到yolov5上的代码
时间: 2024-03-05 07:48:15 浏览: 81
job217.rar_2 1 7编码译码_viterbi_卷积 VHDL_卷积 译码
5星 · 资源好评率100%
下面是一个可以应用到yolov5上的扩张卷积模块的代码示例:
```python
import torch.nn as nn
import torch.nn.functional as F
class ExpandConvModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(ExpandConvModule, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2_dw_5 = nn.Conv2d(out_channels, out_channels, kernel_size=5, padding=2, groups=out_channels, bias=False)
self.bn2_dw_5 = nn.BatchNorm2d(out_channels)
self.conv2_dw_7 = nn.Conv2d(out_channels, out_channels, kernel_size=7, padding=3, groups=out_channels, bias=False)
self.bn2_dw_7 = nn.BatchNorm2d(out_channels)
self.conv2_dw_9 = nn.Conv2d(out_channels, out_channels, kernel_size=9, padding=4, groups=out_channels, bias=False)
self.bn2_dw_9 = nn.BatchNorm2d(out_channels)
self.conv2_ex_5 = nn.Conv2d(out_channels, out_channels, kernel_size=1, dilation=5, bias=False)
self.bn2_ex_5 = nn.BatchNorm2d(out_channels)
self.conv2_ex_7 = nn.Conv2d(out_channels, out_channels, kernel_size=1, dilation=7, bias=False)
self.bn2_ex_7 = nn.BatchNorm2d(out_channels)
self.conv2_ex_9 = nn.Conv2d(out_channels, out_channels, kernel_size=1, dilation=9, bias=False)
self.bn2_ex_9 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels * 7, out_channels, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out_5 = self.conv2_dw_5(out)
out_5 = self.bn2_dw_5(out_5)
out_5 = self.relu(out_5)
out_5 = self.conv2_ex_5(out_5)
out_5 = self.bn2_ex_5(out_5)
out_5 = self.relu(out_5)
out_7 = self.conv2_dw_7(out)
out_7 = self.bn2_dw_7(out_7)
out_7 = self.relu(out_7)
out_7 = self.conv2_ex_7(out_7)
out_7 = self.bn2_ex_7(out_7)
out_7 = self.relu(out_7)
out_9 = self.conv2_dw_9(out)
out_9 = self.bn2_dw_9(out_9)
out_9 = self.relu(out_9)
out_9 = self.conv2_ex_9(out_9)
out_9 = self.bn2_ex_9(out_9)
out_9 = self.relu(out_9)
out = torch.cat((out_5, out_7, out_9, out), dim=1)
out = self.conv3(out)
out = self.bn3(out)
out += residual
out = self.relu(out)
return out
```
这个模块包含了多个平行分支,每个分支都是一个由1x1DWConv和DWConv或扩张卷积构成的卷积层。这些分支的输出被拼接在一起,然后再通过1x1DWConv进行压缩,最终形成特征图y。这个模块还包含了一个残差连接分支,用于保留原始特征图的信息。
阅读全文