如何将以上训练函数训练出来的参数保存为文件
时间: 2024-03-09 22:49:09 浏览: 53
可以在训练函数中添加 ModelCheckpoint 回调函数来在每个 epoch 结束时保存模型参数。下面是一个示例代码:
```
from keras.callbacks import ModelCheckpoint
def train(generator, discriminator, combined, network_input, network_output, filepath):
epochs = 100
batch_size = 128
half_batch = int(batch_size / 2)
# 添加 ModelCheckpoint 回调函数
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', save_best_only=True)
for epoch in range(epochs):
# 训练判别器
idx = np.random.randint(0, network_input.shape[0], half_batch)
real_input = network_input[idx]
real_output = network_output[idx]
fake_output = generator.predict(np.random.rand(half_batch, 100, 1))
d_loss_real = discriminator.train_on_batch(real_input, real_output)
d_loss_fake = discriminator.train_on_batch(fake_output, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# 训练生成器
idx = np.random.randint(0, network_input.shape[0], batch_size)
real_input = network_input[idx]
real_output = network_output[idx]
g_loss = combined.train_on_batch(real_input, real_output)
# 输出训练结果
print('Epoch %d/%d: D loss: %f, G loss: %f' % (epoch + 1, epochs, d_loss, g_loss))
# 调用回调函数,保存模型参数
checkpoint.on_epoch_end(epoch, logs={'d_loss': d_loss, 'g_loss': g_loss})
```
在训练函数中,首先定义一个 ModelCheckpoint 回调函数,将其保存路径 filepath 设置为参数传入。在每个 epoch 结束时,调用回调函数的 on_epoch_end 方法,将当前 epoch 的损失值传入保存模型参数。
在调用 train 函数时,将保存模型参数的文件路径作为参数传递给 train 函数即可。训练完成后,最好的模型参数将自动保存到 filepath 中。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![7z](https://img-home.csdnimg.cn/images/20241231044736.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)