将deeplabv3plus以xception网络为核心的pytorch代码
时间: 2024-03-21 10:38:43 浏览: 216
以下是基于PyTorch的DeepLabv3+模型,使用Xception网络作为backbone的示例代码:
```python
import torch
import torch.nn as nn
from torch.nn import functional as F
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels):
super(ASPP, self).__init__()
# ASPP module with rates of 6, 12, 18 and 24
self.conv1x1_1 = nn.Conv2d(in_channels, out_channels, 1)
self.conv3x3_1 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6)
self.conv3x3_2 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12)
self.conv3x3_3 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18)
self.pool = nn.AdaptiveAvgPool2d(1)
self.conv1x1_2 = nn.Conv2d(in_channels, out_channels, 1)
self.conv1x1_3 = nn.Conv2d(out_channels * 5, out_channels, 1)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x1 = self.conv1x1_1(x)
x2 = self.conv3x3_1(x)
x3 = self.conv3x3_2(x)
x4 = self.conv3x3_3(x)
x5 = self.pool(x)
x5 = self.conv1x1_2(x5)
x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat([x1, x2, x3, x4, x5], dim=1)
x = self.conv1x1_3(x)
x = self.bn(x)
x = self.relu(x)
return x
class DeepLabv3plus(nn.Module):
def __init__(self, num_classes=21):
super(DeepLabv3plus, self).__init__()
# Xception backbone
self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1)
self.block1 = nn.Sequential(
nn.Conv2d(64, 128, 1, stride=2, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 128, 1, stride=1, bias=False),
nn.BatchNorm2d(128),
)
self.block2 = nn.Sequential(
nn.ReLU(),
nn.Conv2d(128, 256, 1, stride=2, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 256, 1, stride=1, bias=False),
nn.BatchNorm2d(256),
)
self.block3 = nn.Sequential(
nn.ReLU(),
nn.Conv2d(256, 728, 1, stride=2, bias=False),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 1, stride=1, bias=False),
nn.BatchNorm2d(728),
)
self.block4 = nn.Sequential(
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=1, bias=False, dilation=2),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=1, bias=False, dilation=2),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=1, bias=False, dilation=2),
nn.BatchNorm2d(728),
)
self.block5 = nn.Sequential(
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=2, bias=False, dilation=4),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=2, bias=False, dilation=4),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=2, bias=False, dilation=4),
nn.BatchNorm2d(728),
)
self.block6 = nn.Sequential(
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=2, bias=False, dilation=4),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=2, bias=False, dilation=4),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=2, bias=False, dilation=4),
nn.BatchNorm2d(728),
)
self.block7 = nn.Sequential(
nn.ReLU(),
nn.Conv2d(728, 728, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(728),
nn.ReLU(),
nn.Conv2d(728, 1024, 1, stride=1, bias=False),
nn.BatchNorm2d(1024),
)
self.aspp = ASPP(1024, 256)
self.conv1x1 = nn.Conv2d(1280, 256, 1)
self.bn1 = nn.BatchNorm2d(256)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.conv3x3 = nn.Conv2d(256, 256, 3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(256)
self.conv3x3_2 = nn.Conv2d(256, num_classes, 1)
def forward(self, x):
h = self.conv1(x)
h = self.conv2(h)
h = self.block1(h) + h
h = self.block2(h) + h
h = self.block3(h) + h
h = self.block4(h) + h
h = self.block5(h) + h
h = self.block6(h) + h
h = self.block7(h)
h = self.aspp(h)
h = self.conv1x1(h)
h = self.bn1(h)
h = self.relu(h)
h = self.dropout(h)
h = self.conv3x3(h)
h = self.bn2(h)
h = self.relu(h)
h = self.conv3x3_2(h)
h = F.interpolate(h, size=x.shape[2:], mode='bilinear', align_corners=True)
return h
```
其中,ASPP模块实现了带有不同空洞率的卷积,以捕捉不同尺度的像素信息。DeepLabv3plus模型中使用了7个Xception模块和ASPP模块。最后使用1x1卷积层和双线性插值进行输出。
阅读全文