k折交叉验证的BP神经网络MATLAB完整代码
时间: 2023-11-05 20:02:52 浏览: 556
交叉验证MATLAB代码
3星 · 编辑精心推荐
以下是一个简单的 k 折交叉验证的 BP 神经网络 MATLAB 代码示例:
```
%% 数据准备
% 读取数据集
load iris_dataset.mat
inputs = irisInputs;
targets = irisTargets;
% 将数据集随机打乱
randIndices = randperm(size(inputs, 2));
inputs = inputs(:, randIndices);
targets = targets(:, randIndices);
% 分割数据集
numFolds = 10; % k 值
foldSize = floor(size(inputs, 2) / numFolds);
foldIndices = zeros(numFolds, foldSize);
for i = 1:numFolds
foldIndices(i, :) = (i-1)*foldSize+1:i*foldSize;
end
%% k 折交叉验证
numIterations = 1000; % BP 神经网络迭代次数
learningRate = 0.1; % BP 神经网络学习率
accuracies = zeros(numFolds, 1);
for i = 1:numFolds
% 准备训练和测试数据
testInputs = inputs(:, foldIndices(i, :));
testTargets = targets(:, foldIndices(i, :));
trainInputs = inputs(:, [foldIndices([1:i-1, i+1:end])]);
trainTargets = targets(:, [foldIndices([1:i-1, i+1:end])]);
% 训练 BP 神经网络
net = feedforwardnet([5, 3]); % 建立一个两层的 BP 神经网络
net.trainParam.epochs = numIterations;
net.trainParam.lr = learningRate;
net = train(net, trainInputs, trainTargets);
% 使用训练好的 BP 神经网络进行预测
predictedTargets = net(testInputs);
[~, predictedIndices] = max(predictedTargets);
[~, targetIndices] = max(testTargets);
% 计算准确率
numCorrect = sum(predictedIndices == targetIndices);
accuracies(i) = numCorrect / length(targetIndices);
end
%% 输出结果
meanAccuracy = mean(accuracies);
stdDev = std(accuracies);
fprintf('Mean accuracy: %.2f%%\n', meanAccuracy * 100);
fprintf('Standard deviation: %.2f%%\n', stdDev * 100);
```
上述代码将数据集分为 10 个折,每次使用其中 9 个折进行训练,1 个折进行测试,共进行 10 次。在每次训练时,建立一个两层的 BP 神经网络,迭代次数为 1000,学习率为 0.1。使用训练好的神经网络进行预测,并计算准确率。最终输出平均准确率和标准差。
阅读全文