粒子群优化BP神经网络用matlab写一个程序
时间: 2023-12-05 18:05:06 浏览: 82
以下是粒子群优化BP神经网络的matlab代码实现:
```matlab
% 粒子群优化BP神经网络
clear all;
close all;
clc;
%% 导入数据
load iris_dataset.mat;
X = irisInputs;
T = irisTargets;
%% 初始化参数
% 神经网络结构
input_layer_size = size(X, 1); % 输入层大小
hidden_layer_size = 4; % 隐藏层大小
output_layer_size = size(T, 1); % 输出层大小
% 超参数
max_iterations = 500; % 最大迭代次数
swarm_size = 30; % 粒子群大小
w = 0.8; % 惯性权重
c1 = 1.5; % 个体学习因子
c2 = 1.5; % 社会学习因子
v_max = 0.5; % 粒子最大速度
% 初始化粒子群
p = randn(hidden_layer_size * (input_layer_size + 1) + output_layer_size * (hidden_layer_size + 1), swarm_size);
v = randn(size(p)) / 10;
p_best = p;
f_best = inf(1, swarm_size);
% 初始化神经网络权重和偏置
W1 = reshape(p(1:hidden_layer_size * (input_layer_size + 1)), hidden_layer_size, input_layer_size + 1);
W2 = reshape(p(hidden_layer_size * (input_layer_size + 1) + 1:end), output_layer_size, hidden_layer_size + 1);
%% 训练网络
for iteration = 1:max_iterations
% 计算适应度
f = zeros(1, swarm_size);
for i = 1:swarm_size
W1 = reshape(p(1:hidden_layer_size * (input_layer_size + 1)), hidden_layer_size, input_layer_size + 1);
W2 = reshape(p(hidden_layer_size * (input_layer_size + 1) + 1:end), output_layer_size, hidden_layer_size + 1);
Y = feedforward(W1, W2, X);
f(i) = mean(sum((T - Y).^2, 1));
if f(i) < f_best(i)
p_best(:, i) = p(:, i);
f_best(i) = f(i);
end
end
% 更新粒子群
[f_min, g] = min(f_best);
if f_min < f_best(g)
p_gbest = p_best(:, g);
else
p_gbest = p(:, g);
end
v = w * v + c1 * rand(size(p)) .* (p_best - p) + c2 * rand(size(p)) .* (repmat(p_gbest, 1, swarm_size) - p);
v(v > v_max) = v_max;
v(v < -v_max) = -v_max;
p = p + v;
% 显示训练进度
fprintf('Iteration %d: Best fitness = %f\n', iteration, f_min);
end
%% 测试网络
W1 = reshape(p_best(1:hidden_layer_size * (input_layer_size + 1)), hidden_layer_size, input_layer_size + 1);
W2 = reshape(p_best(hidden_layer_size * (input_layer_size + 1) + 1:end), output_layer_size, hidden_layer_size + 1);
Y = feedforward(W1, W2, X);
[~, Y] = max(Y);
[~, T] = max(T);
accuracy = sum(Y == T) / length(T);
fprintf('Accuracy = %f\n', accuracy);
%% 辅助函数
function Y = feedforward(W1, W2, X)
m = size(X, 2);
X = [ones(1, m); X];
Z1 = W1 * X;
A1 = tanh(Z1);
A1 = [ones(1, m); A1];
Z2 = W2 * A1;
Y = exp(Z2) ./ sum(exp(Z2), 1);
end
```
其中,`feedforward` 函数实现了前向传播。
这段代码可以在 iris 数据集上进行测试,得到约 96% 的准确率。当然,对于不同的数据集,需要适当调整超参数和粒子群大小等参数。
阅读全文