生成堆叠降噪自编码器的pytorch代码
时间: 2023-10-10 13:08:36 浏览: 91
以下是生成堆叠降噪自编码器的PyTorch代码:
```python
import torch
import torch.nn as nn
class DenoisingAutoencoder(nn.Module):
def __init__(self, input_dim, hidden_dims):
super(DenoisingAutoencoder, self).__init__()
self.input_dim = input_dim
self.hidden_dims = hidden_dims
self.num_layers = len(hidden_dims)
# Encoder layers
self.encoder_layers = nn.ModuleList()
for i in range(self.num_layers):
if i == 0:
self.encoder_layers.append(nn.Linear(input_dim, hidden_dims[i]))
else:
self.encoder_layers.append(nn.Linear(hidden_dims[i-1], hidden_dims[i]))
self.encoder_layers.append(nn.ReLU(inplace=True))
# Decoder layers
self.decoder_layers = nn.ModuleList()
for i in range(self.num_layers-1, -1, -1):
if i == self.num_layers-1:
self.decoder_layers.append(nn.Linear(hidden_dims[i], input_dim))
else:
self.decoder_layers.append(nn.Linear(hidden_dims[i+1], hidden_dims[i]))
self.decoder_layers.append(nn.ReLU(inplace=True))
self.loss = nn.MSELoss()
def forward(self, x):
# Add noise to input
noise = torch.randn(x.shape)
noisy_x = x + noise
# Encoder
for layer in self.encoder_layers:
x = layer(x)
# Decoder
for layer in self.decoder_layers:
x = layer(x)
return x, noisy_x
def compute_loss(self, x, pred_x):
loss = self.loss(x, pred_x)
return loss
```
该代码定义了一个堆叠降噪自编码器(stacked denoising autoencoder),它具有多个隐藏层。输入维度和隐藏层维度作为参数传递给模型。模型包含一个编码器和一个解码器。编码器将输入转换为隐藏表示,而解码器将隐藏表示转换回输入。在训练期间,模型使用带有随机噪声的输入进行训练,以帮助模型学习具有鲁棒性的隐藏表示。该模型使用均方误差损失函数来计算重构损失。
阅读全文