将DataStreamSource转化为json处理, 并将部分对应的json使用java代码提取出来
时间: 2024-01-12 19:04:48 浏览: 68
您可以使用Flink的JSON库将DataStreamSource转换为JSON格式,然后使用Java代码处理JSON数据。下面是一个简单的例子:
```java
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.JsonNode;
import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper;
public class JsonProcessingExample {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 从Kafka读取JSON数据
String kafkaTopic = "test-topic";
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
kafkaProps.setProperty("group.id", "test-group");
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(kafkaTopic, new SimpleStringSchema(), kafkaProps);
DataStreamSource<String> jsonDataStream = env.addSource(kafkaConsumer);
// 将JSON数据转换为JsonNode对象
ObjectMapper objectMapper = new ObjectMapper();
DataStream<JsonNode> jsonNodeStream = jsonDataStream.map(jsonStr -> objectMapper.readTree(jsonStr));
// 提取JSON中的某些字段
DataStream<String> extractedDataStream = jsonNodeStream.map(jsonNode -> {
String field1 = jsonNode.get("field1").asText();
int field2 = jsonNode.get("field2").asInt();
double field3 = jsonNode.get("field3").asDouble();
return String.format("field1=%s, field2=%d, field3=%f", field1, field2, field3);
});
// 输出处理后的数据
extractedDataStream.print();
env.execute("JSON Processing Example");
}
}
```
在这个例子中,我们使用Flink的Kafka Connector从Kafka读取JSON数据,并将其转换为JsonNode对象。然后,我们使用Java代码从JsonNode对象中提取出我们感兴趣的字段,并将其格式化为字符串。最后,我们输出处理后的数据。
阅读全文