常见的用于视频中基于注意力机制的2D人体姿态估计算法有哪些?
时间: 2024-05-24 07:15:38 浏览: 109
3D人体姿态估计-基于2D关键点轨迹在视频中实现高效3D人体姿态估计算法-附项目源码+流程教程-优质项目实战.zip
常见的用于视频中基于注意力机制的2D人体姿态估计算法包括:
1. Spatial Temporal Attention Pooling Network (STAPNet)
2. Multi-Level Attention Network (MLAN)
3. Spatial Temporal Graph Convolutional Network (ST-GCN)
4. Deep Multi-Person Pose Estimation with Body-Meshes
5. Multi-Person Pose Estimation with Enhanced Channel-wise and Spatial Attention Network (ECANet)
6. Pose Flow: Efficient Online Pose Tracking
7. Graph-PCNN: Two-Stage 3D Pose Estimation with Graph Pose Refinement
8. Multi-Person Pose Estimation with Enhanced Channel-wise and Spatial Attention Network (ECANet)
9. Attentional 2D-Human Pose Estimation
以上算法均采用注意力机制,可以更好地处理视频中的复杂动作和多人姿态估计问题。
阅读全文