super(BPNeuralNetwork4, self).__init__()
时间: 2023-11-28 11:06:26 浏览: 79
这行代码是Python中使用 super() 函数来调用父类的构造方法,从而在子类中继承父类的属性和方法。在这行代码中,`BPNeuralNetwork4`是当前子类的名称,`self`表示当前对象,而`__init__()`则表示构造方法。通过 `super(BPNeuralNetwork4, self).__init__()`,子类可以调用父类的构造方法,从而继承父类的属性和方法。
相关问题
class BPNeuralNetwork4(torch.nn.Module):#四层 def __init__(self, n_feature, n_hidden1, n_hidden2, n_hidden3, n_hidden4, n_output, dropout): super(BPNeuralNetwork4, self).__init__() self.h1 = torch.nn.Linear(n_feature, n_hidden1) self.h2 = torch.nn.Linear(n_hidden1, n_hidden2) self.h3 = torch.nn.Linear(n_hidden2, n_hidden3) self.h4 = torch.nn.Linear(n_hidden3, n_hidden4) self.o = torch.nn.Linear(n_hidden4, n_output) self.dropout = torch.nn.Dropout(p=dropout) # dropout训练 def forward(self, x): x = self.h1(x) x = self.dropout(x) x = F.relu(x) x = self.h2(x) x = self.dropout(x) x = F.relu(x) x = self.h3(x) x = self.dropout(x) x = F.relu(x) x = self.h4(x) x = self.dropout(x) x = F.relu(x) x = self.o(x) # x = F.elu(x) return x
这是一个基于PyTorch框架实现的四层BP神经网络模型,输入层有n_feature个神经元,隐藏层1有n_hidden1个神经元,隐藏层2有n_hidden2个神经元,隐藏层3有n_hidden3个神经元,隐藏层4有n_hidden4个神经元,输出层有n_output个神经元。其中,每个隐藏层和输出层都使用线性变换和ReLU激活函数,而在每个隐藏层上都添加了dropout层以防止过拟合。在模型的前向传播过程中,输入数据x先通过第一个隐藏层,然后经过dropout层和ReLU激活函数,接着经过第二个隐藏层,再次经过dropout层和ReLU激活函数,以此类推,最后通过输出层得到预测结果。
pytorch实现PSO优化BP神经网络
PyTorch是一种基于Python的数据科学库,特别适合深度学习任务。要使用PyTorch实现粒子群优化(Particle Swarm Optimization, PSO)用于调整BP(Backpropagation)神经网络的权重,你需要遵循以下几个步骤:
1. **导入必要的库**:
```python
import torch
from torch.nn import BCEWithLogitsLoss, Module, Linear, Sigmoid
from sklearn.model_selection import train_test_split
from pso.particle_swarm_optimization import ParticleSwarmOptimizer
```
2. **定义神经网络结构**:
```python
class BPNeuralNetwork(Module):
def __init__(self, input_dim, hidden_layers, output_dim):
super(BPNeuralNetwork, self).__init__()
self.layers = []
for i in range(len(hidden_layers)):
self.layers.append(Linear(input_dim if i == 0 else hidden_layers[i - 1], hidden_layers[i]))
self.layers.append(Sigmoid())
self.output_layer = Linear(hidden_layers[-1], output_dim)
def forward(self, x):
out = x
for layer in self.layers[:-1]:
out = layer(out)
out = self.layers[-1](out)
return self.output_layer(out)
```
3. **设置PSO参数并初始化**:
```python
input_dim = ... # 输入特征数
output_dim = ... # 输出类别数
num_particles = ...
max_iter = ...
particle_size = [input_dim] + list(hidden_layers) + [output_dim]
optimizer = ParticleSwarmOptimizer(particle_size, max_iter, learning_factors=(2, 2))
```
4. **训练过程**:
```python
def train(optimizer, model, data, labels, loss_fn, epochs=100):
for epoch in range(epochs):
optimizer.update(data, labels)
model_weights = optimizer.get_best_solution()
model.load_state_dict({name: tensor for name, tensor in zip(model.state_dict().keys(), model_weights)})
train_loss = loss_fn(model(data), labels).item()
print(f"Epoch {epoch+1}: Train Loss = {train_loss}")
```
5. **完整流程**:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
net = BPNeuralNetwork(input_dim, hidden_layers, output_dim)
criterion = BCEWithLogitsLoss() # 根据任务选择合适的损失函数
train(optimizer, net, X_train, y_train, criterion)
```
阅读全文