用python实现只是对矩阵的行向量进行ZCA操作
时间: 2024-05-09 17:19:30 浏览: 173
以下是Python实现矩阵行向量ZCA操作的示例代码:
```python
import numpy as np
def zca_whitening(X):
"""
ZCA whitening of a matrix X.
Args:
X: numpy array, shape (n_samples, n_features)
Returns:
X_zca: numpy array, shape (n_samples, n_features)
"""
# Center the data
X_centered = X - np.mean(X, axis=0)
# Compute the covariance matrix
cov = np.dot(X_centered.T, X_centered) / (X.shape[0] - 1)
# Compute the eigenvalues and eigenvectors of the covariance matrix
eigenvalues, eigenvectors = np.linalg.eigh(cov)
# Apply the ZCA whitening
X_zca = np.dot(X_centered, eigenvectors)
X_zca = np.dot(X_zca, np.diag(1.0 / np.sqrt(eigenvalues + 1e-5)))
X_zca = np.dot(X_zca, eigenvectors.T)
return X_zca
```
在这个代码中,我们首先对输入矩阵进行中心化操作,然后计算协方差矩阵的特征值和特征向量,最后对输入矩阵进行ZCA白化操作。需要注意的是,我们在对特征值进行除法操作时,加上了一个非常小的数,以避免除以0的情况。
阅读全文