mediapipe怎么把检测到的手部框选
时间: 2023-12-11 16:08:32 浏览: 111
在mediapipe中,可以使用Hand Landmark模型来检测手部的关键点,并且可以通过这些关键点来框选手部。具体实现步骤如下:
1. 导入必要的库和模型:
```
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
```
2. 初始化模型:
```
hands = mp_hands.Hands(
min_detection_confidence=0.7,
min_tracking_confidence=0.5)
```
3. 处理图像,并获取手部关键点:
```
image = cv2.imread('hand.jpg')
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
```
4. 遍历每个检测到的手部,并绘制框选框:
```
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# 获取手部区域的最小最大坐标
x_min, x_max, y_min, y_max = get_hand_box(hand_landmarks)
# 绘制框选框
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
```
其中,get_hand_box()函数用于获取手部区域的最小最大坐标,具体实现可以参考以下代码:
```
def get_hand_box(hand_landmarks):
x = [landmark.x for landmark in hand_landmarks.landmark]
y = [landmark.y for landmark in hand_landmarks.landmark]
z = [landmark.z for landmark in hand_landmarks.landmark]
x_min, x_max = int(min(x) * image.shape[1]), int(max(x) * image.shape[1])
y_min, y_max = int(min(y) * image.shape[0]), int(max(y) * image.shape[0])
return x_min, x_max, y_min, y_max
```
执行以上代码后,就可以在图像中框选出检测到的手部区域。
阅读全文